Skip to main content
Log in

Banking competition, production externalities, and the effects of monetary policy

  • Research Article
  • Published:
Economic Theory Aims and scope Submit manuscript

Abstract

Since the global financial crisis, there has been a significant amount of concern about the presence of large-scale financial intermediaries which affects the competitive landscape of the banking sector in advanced economies. In light of this issue, this paper develops a framework to demonstrate how the degree of concentration impacts economic activity. As is standard in the growth literature, we incorporate production externalities from the aggregate capital stock which promote economic development. In this setting, we show that monetary policy may need to accommodate departures from perfect competition by setting a higher rate of money growth. In fact, in the presence of large capital externalities, neither low inflation nor perfect competition may be optimal. That is, in environments where capital accumulation would be expected to be inefficiently low, the optimal rate of money growth is higher than the Friedman rule in order to encourage investment—yet, the optimal competitive structure favors increased concentration to foster a large seigniorage tax base that also adds to the capital stock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Janicki and Prescott treat banks under the same holding company as part of the same bank.

  2. World Bank Global Development, Source Code: GFDD.OI.01. Though the data are obtained from the World Bank Global Financial Development Database, it is derived from BankScope. The first year that the concentration ratio for these countries appears in the database is 1996 and the most recent year is 2014.

  3. Hannan (1991) and Corvoisier and Gropp (2002) also observe that interest rates on loans depend on concentration ratios in markets.

  4. In addition, see Deidda and Fattouh (2005). By comparison, Claessens and Laeven (2005) do not generally find evidence that banking sector competition is related to growth. However, they do observe that more competition promotes growth in industries that are more dependent on external financing.

  5. See also King and Levine (1993) who show that the level of development of the banking system plays an important role in promoting equipment investment and growth.

  6. Both Cechetti (1999) and Kashyap and Stein (1997) study how the effectiveness of monetary policy depends on competition in the banking system. Notably, Cechetti observes that the impact of policy shocks on output is higher if the banking sector is more competitive. See also the empirical evidence in Ghossoub and Reed (2015, 2016).

  7. In light of these important aspects of activity, Jones (1994) stresses that the tax treatment of capital goods is critically important for growth and welfare. Further, Easterly (1993) emphasizes that distortions in markets can impede capital accumulation and thereby lead to lower economic growth.

  8. We thank an anonymous referee for explaining to us that there are Friedman rule equilibria in our framework in which the returns from money balances would be transferred to all depositors.

  9. As mentioned in introduction, one of the objectives of our work is to study optimal monetary policy in advanced economies. In advanced economies, monetary policy has been shown to either be superneutral or to be associated with a Tobin effect. (See Ahmed and Rogers 2000; Bullard and Keating 1995.) As we demonstrate, steady states in our benchmark model feature either a Tobin effect or superneutrality if the coefficient of relative risk aversion is less than one.

  10. Clearly, the standard AK model is obtained when \(\rho =1-\alpha \).

  11. In settings where money and capital yield the same rate of return, one might argue that savings do not need to be intermediated. However, intermediation is costless, and because intermediaries always act on behalf of depositors, we can assume that all saving is intermediated.

  12. It is important to point out that \(\underline{\sigma }_{1}\) and \(\underline{ \sigma }_{2}\) are both positive (negative) for all \(\pi <(>)1-\alpha \). If \( \pi \) is relatively low, then there is little liquidity risk in the economy. Since there is little liquidity risk, there is less of a role for banks to provide risk-sharing. Consequently, they would hold more capital. As a result, the returns to capital would be lower if liquidity risk is low. In turn, there can be Friedman rule equilibria with positive rates of money growth. Following the arguments of Bhattacharya et al., in economies with a negative Friedman rule money growth rate it often is the case that there is a storage technology with a fixed rate of return. Instead, we study neoclassical production economies where seigniorage revenues are redistributed to the young.

  13. Under the parameter values considered, with \(N=20\), \(\left( \underline{ \sigma }_{1},\underline{\sigma }_{2}\right) =\left( 1,1.0345\right) \) when \( \rho =0\), \(\left( \underline{\sigma }_{1},\underline{\sigma }_{2}\right) =\left( 1,1.0292\right) \) when \(\rho =0.1\), and \(\left( \underline{\sigma } _{1},\underline{\sigma }_{2}\right) =\left( 1,1.008\right) \) when \(\rho =0.5\) .

  14. The condition on \(\sigma \), \(\left( \alpha +\rho \right) \sigma <\frac{1}{ \alpha }-\frac{1}{1-\pi }\), is only in place so that \(\underline{N}\) exceeds one. It is not needed to show that relatively high levels of concentration can be optimal.

  15. The results are robust under a large set values of \(\lambda \) and other parameters.

References

  • Ahmed, S., Rogers, J.H.: Inflation and the great ratios: long term evidence from the U.S. J. Monet. Econ. 45, 3–35 (2000)

    Article  Google Scholar 

  • Allen, F., Gale, D.: Comparing Financial Systems. MIT Press, Cambridge (2000)

    Google Scholar 

  • Beck, T., Demirguc-Kunt, A., Maksimovic, V.: Bank competition and access to finance: international evidence. J. Money Credit Bank. 36, 627–648 (2004)

    Article  Google Scholar 

  • Beck, T., Demirguc-Kunt, A., Maksimovic, V.: Bank concentration, competition, and crises: first results. J. Bank. Finance 30, 1581–1603 (2006)

    Article  Google Scholar 

  • Bencivenga, V., Smith, B.: Financial intermediation and endogenous growth. Rev. Econ. Stud. 58, 195–209 (1991)

    Article  Google Scholar 

  • Bhattacharya, J., Haslag, J., Martin, A.: Optimal monetary policy and economic growth. Eur. Econ. Rev. 53, 210–221 (2009)

    Article  Google Scholar 

  • Boyd, J., De Nicolo, G.: The theory of bank risk taking and competition revisited. J. Finance 60, 1329–1343 (2005)

    Article  Google Scholar 

  • Boyd, J., De Nicolo, G., Smith, B.D.: Crises in competitive versus monopolistic banking systems. J. Money Credit Bank. 36, 487–506 (2004)

    Article  Google Scholar 

  • Bretschger, L., Kappel, V., Werner, T.: Market concentration and the likelihood of financial crises. J. Bank. Finance 36, 3336–3345 (2012)

    Article  Google Scholar 

  • Bullard, J., Keating, J.: The long-run relationship between inflation and output in postwar economies. J. Monet. Econ. 36, 477–496 (1995)

    Article  Google Scholar 

  • Cechetti, S.: Legal structure, financial structure, and the monetary policy transmission mechanism. Fed. Reserve Bank N. Y. Econ. Policy Rev. 5, 9–28 (1999)

    Google Scholar 

  • Cetorelli, N., Gambera, M.: Banking market structure, financial dependence and growth: international evidence from industry data. J. Finance 56, 617–648 (2001)

    Article  Google Scholar 

  • Claessens, S., Laeven, L.: Financial dependence, banking sector competition, and economic growth. J. Eur. Econ. Assoc. 3, 179–207 (2005)

    Article  Google Scholar 

  • Corvoisier, S., Gropp, R.: Bank concentration and retail interest rates. J. Bank. Finance 26, 2155–2189 (2002)

    Article  Google Scholar 

  • Deidda, L., Fattouh, B.: Concentration in the banking industry and economic growth. Macroecon. Dyn. 9, 198–219 (2005)

    Article  Google Scholar 

  • De Long, J.B., Summers, L.H.: Equipment investment and economic growth. Q. J. Econ. 106, 445–502 (1991)

    Article  Google Scholar 

  • De Long, J.B., Summers, L.H.: How strongly do developing economies benefit from equipment investment? J. Monet. Econ. 32, 395–415 (1993)

    Article  Google Scholar 

  • Demirguc-Kunt, A., Laeven, L., Levine, R.: Regulations, market structure, institutions, and the cost of financial intermediation. J. Money Credit Bank. 36, 593–622 (2004)

    Article  Google Scholar 

  • Diamond, D., Dybvig, P.: Bank runs, deposit insurance, and liquidity. J. Polit. Econ. 91, 191–206 (1983)

    Article  Google Scholar 

  • Easterly, W.: How much do distortions affect growth? J. Monet. Econ. 32, 187–212 (1993)

    Article  Google Scholar 

  • Ghossoub, E., Reed, R.: Liquidity risk, economic development, and the effects of monetary policy. Eur. Econ. Rev. 54, 252–268 (2010)

    Article  Google Scholar 

  • Ghossoub, E., Reed, R.: The size distribution of the banking sector and the effects of monetary policy. Eur. Econ. Rev. 75, 156–176 (2015)

    Article  Google Scholar 

  • Ghossoub, E., Reed, R.: Banking Competition, Monetary Policy, and Capital Accumulation. University of Alabama, Mimeo (2016)

    Google Scholar 

  • Ghossoub, E., Laosuthi, T., Reed, R.: The role of financial sector competition for monetary policy. Can. J. Econ. 45, 270–287 (2012)

    Article  Google Scholar 

  • Hannan, T.H.: Bank commercial loan markets and the role of market structure: evidence from surveys of commercial lending. J. Bank. Finance 15, 133–149 (1991)

    Article  Google Scholar 

  • Harrison, S.G.: Returns to scale and externalities in the consumption and investment sectors. Rev. Econ. Dyn. 6, 963–976 (2003)

    Article  Google Scholar 

  • Janicki, H.P., Prescott, E.S.: Changes in the size distribution of U.S. banks, 1960–2005. Fed. Reserve Bank Richmond Econ. Q. 92, 291–316 (2006)

    Google Scholar 

  • Jones, C.I.: Economic growth and the relative price of capital. J. Monet. Econ. 34, 359–382 (1994)

    Article  Google Scholar 

  • Kashyap, A., Stein, J.: The role of banks in monetary policy: a survey with implications for the European monetary union. Fed. Reserve Bank Chic. Econ. Perspect. 21, 2–18 (1997)

    Google Scholar 

  • King, R.G., Levine, R.: Finance and growth: schumpeter might be right. Q. J. Econ. 108, 717–737 (1993)

    Article  Google Scholar 

  • Matsuoka, T.: Monetary policy and banking structure. J. Money Credit Bank. 43, 1109–1129 (2011)

    Article  Google Scholar 

  • Romer, P.M.: Increasing returns and long-run growth. J. Polit. Econ. 94, 1002–1037 (1986)

    Article  Google Scholar 

  • Schreft, S., Smith, B.D.: Money, banking, and capital formation. J. Econ. Theory 73, 157–182 (1997)

    Article  Google Scholar 

  • Schreft, S., Smith, B.D.: The effects of open market operations in a model of intermediation and growth. Rev. Econ. Stud. 65, 519–50 (1998)

    Article  Google Scholar 

  • Williamson, S.D.: Increasing returns to scale in financial intermediation and the non-neutrality of government policy. Rev. Econ. Stud. 53, 863–875 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert R. Reed.

Additional information

Edgar A. Ghossoub: This research benefited in part from a summer research grant from the College of Business at the University of Texas at San Antonio.

R. R. Reed: We thank two anonymous referees for many insightful comments which significantly improved the contribution of our work.

Technical appendix

Technical appendix

1. A typical bank’s problem when all seigniorage revenues are rebated to young agents:

First, consider the case where the incentive compatibility constraint is non-binding. As discussed in the text, each intermediary makes its portfolio choice to maximize (5) subject to (6)–(8). Upon substituting (7) and (9) into objective function, (5), the problem can be written as:

$$\begin{aligned} \underset{m_{t},k_{t+1}}{\mathrm{Max}}\ \frac{\pi \left[ \frac{N}{\pi }m_{t}\frac{ P_{t}}{P_{t+1}}\right] ^{1-\theta }+\left( 1-\pi \right) \left[ \frac{N}{ 1-\pi }r\left( k_{t+1},K_{t+1}^{N-1}\right) k_{t+1}\right] ^{1-\theta }}{ 1-\theta } \end{aligned}$$
(44)

Next, using (6), the bank’s problem is reduced to a choice of \(k_{t+1}:\)

$$\begin{aligned} \underset{k_{t+1}}{\mathrm{Max}}\ \frac{\pi \left[ \frac{N}{\pi }\frac{P_{t}}{P_{t+1}} \left( \frac{1}{N}\left( w_{t}\!+\!\tau _{t}\right) -k_{t+1}\right) \right] ^{1-\theta }+\left( 1-\pi \right) \left[ \frac{N}{1-\pi }r\left( k_{t+1},K_{t+1}^{N-1}\right) k_{t+1}\right] ^{1-\theta }}{1-\theta } \end{aligned}$$

The bank’s choice of capital investment is such that:

$$\begin{aligned}&\pi ^{\theta }\left( N\frac{P_{t}}{P_{t+1}}\right) ^{1-\theta }\left( \frac{1 }{N}\left( w_{t}+\tau _{t}\right) -k_{t+1}\right) ^{-\theta }\\&\quad =\left( 1-\pi \right) ^{\theta }N^{1-\theta }\left[ r\left( k_{t+1},K_{t+1}^{N-1}\right) k_{t+1}\right] ^{-\theta }\\&\qquad *\left[ r\left( k_{t+1},K_{t+1}^{N-1}\right) +\frac{\partial r\left( k_{t+1},K_{t+1}^{N-1}\right) }{\partial K_{t+1}}\frac{\partial K_{t+1}}{ \partial k_{t+1}}k_{t+1}\right] \end{aligned}$$

where \(r\left( k_{t+1},K_{t+1}^{N-1}\right) =\alpha A \left( K_{t+1}^{N-1}+k_{t+1}\right) ^{\rho +\alpha -1}=\alpha AK_{t+1}^{\rho +\alpha -1}\) and \(K_{t+1}=K_{t+1}^{N-1}+k_{t+1}\). Therefore:

$$\begin{aligned} \frac{\partial r\left( k_{t+1},K_{t+1}^{N-1}\right) }{\partial K_{t+1}} =-\left( 1-\rho -\alpha \right) r\left( k_{t+1},K_{t+1}^{N-1}\right) K_{t+1}^{-1} \end{aligned}$$

and \(\frac{\partial K_{t+1}}{\partial k_{t+1}}=1\). Upon substituting this information into the choice of \(k_{t+1}\), we obtain (12):

$$\begin{aligned}&\pi ^{\theta }\left( N\frac{P_{t}}{P_{t+1}}\right) ^{1-\theta }\left( \frac{1 }{N}\left( w_{t}+\tau _{t}\right) -k_{t+1}\right) ^{-\theta } \\&\quad = \left( 1-\pi \right) ^{\theta }N^{1-\theta }\left[ r\left( k_{t+1},K_{t+1}^{N-1}\right) k_{t+1}\right] ^{-\theta } \\&\qquad *\left[ 1-\left( 1-\rho -\alpha \right) \frac{k_{t+1}}{ k_{t+1}+K_{t+1}^{N-1}}\right] r\left( k_{t+1},K_{t+1}^{N-1}\right) \end{aligned}$$

Next, from a bank’s balance sheet condition, (6), we have: \(m_{t}=\frac{1}{N} \left( w_{t}+\tau _{t}\right) -k_{t+1}\) . Plugging this information into (12):

$$\begin{aligned} \pi ^{\theta }\left( N\frac{P_{t}}{P_{t+1}}\right) ^{1-\theta }m_{t}^{-\theta }= & {} \left( 1-\pi \right) ^{\theta }N^{1-\theta }\left[ r\left( k_{t+1},K_{t+1}^{N-1}\right) k_{t+1}\right] ^{-\theta } \nonumber \\&*\left[ 1-\left( 1-\rho -\alpha \right) \frac{k_{t+1}}{ k_{t+1}+K_{t+1}^{N-1}}\right] r \nonumber \\&\left( k_{t+1},K_{t+1}^{N-1}\right) \end{aligned}$$
(45)

With some simplification, it is easily verified that (45) can be written as:

$$\begin{aligned} \begin{aligned}&m_{t}\left( K_{t+1}^{N-1},\frac{P_{t+1}}{P_{t}}\right) \\&\quad =\frac{k_{t+1}}{\frac{1-\pi }{\pi } \left[ 1-\left( 1-\rho -\alpha \right) \frac{k_{t+1}}{k_{t+1}+K_{t+1}^{N-1}} \right] ^{\frac{1}{\theta }}\left( r\left( k_{t+1},K_{t+1}^{N-1}\right) \frac{P_{t+1}}{P_{t}}\right) ^{^{\frac{1-\theta }{\theta }}}} \end{aligned} \end{aligned}$$
(46)

Next, balance sheet condition, (6), implies that \(k_{t+1}=\frac{1}{N}\left( w_{t}+\tau _{t}\right) -m_{t}\). Using this information:

$$\begin{aligned} \begin{aligned}&m_{t}\left( K_{t+1}^{N-1},\frac{P_{t+1}}{P_{t}}\right) \\&\quad =\frac{\frac{w_{t}+\tau _{t}}{N}}{ 1+\frac{1-\pi }{\pi }\left[ 1-\left( 1-\rho -\alpha \right) \frac{k_{t+1}}{ k_{t+1}+K_{t+1}^{N-1}}\right] ^{\frac{1}{\theta }}\left( r\left( k_{t+1},K_{t+1}^{N-1}\right) \frac{P_{t+1}}{P_{t}}\right) ^{^{\frac{1-\theta }{\theta }}}} \end{aligned} \end{aligned}$$
(47)

Recall that in a symmetric Nash equilibrium, \(K_{t+1}^{*} =Nk_{t+1}^{*}\). Plugging the definition of \(I_{t}^{*}\), where \(I_{t}^{*}\equiv I_{t}\left( k_{t+1}^{*},\frac{P_{t+1}}{P_{t}};N\right) =r\left( k_{t+1}^{*};N\right) \frac{P_{t+1}}{P_{t}}\) , into (47):

$$\begin{aligned} m_{t}\left( k_{t+1}^{*},\frac{P_{t+1}}{P_{t}};N\right) =\frac{\frac{ w_{t}+\tau _{t}}{N}}{1+\frac{1-\pi }{\pi }\left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] ^{\frac{1}{\theta }}\left( I_{t}\left( k_{t+1}^{*},\frac{P_{t+1}}{P_{t}};N\right) \right) ^{^{\frac{1-\theta }{ \theta }}}} \end{aligned}$$

which is the expression obtained in the text.

Using (7) and (9), the relative return to depositors is such that:

$$\begin{aligned} \frac{r_{t}^{n^{*}}}{r_{t}^{m^{*}}}=\frac{\pi Nr\left( k_{t+1}^{*};N\right) k_{t+1}^{*}}{\left( 1-\pi \right) Nm_{t}\left( k_{t+1}^{*},\frac{P_{t+1}}{P_{t}};N\right) \frac{P_{t}}{P_{t+1}}} \end{aligned}$$
(48)

Substituting for \(m_{t}\left( k_{t+1}^{*}, \frac{P_{t+1}}{P_{t}};N\right) \) from (46) yields:

$$\begin{aligned} \frac{r_{t}^{n^{*}}}{r_{t}^{m^{*}}}= & {} \left[ 1-\left( 1-\rho -\alpha \right) \frac{k_{t+1}^{*}}{K_{t+1}^{*}}\right] ^{\frac{1}{ \theta }}\left( r\left( k_{t+1}^{*};N\right) \frac{P_{t+1}}{P_{t}} \right) ^{\frac{1}{\theta }} \\= & {} \left[ 1-\left( 1-\rho -\alpha \right) \frac{1}{N}\right] ^{\frac{1}{ \theta }}\left( r\left( k_{t+1}^{*};N\right) \frac{P_{t+1}}{P_{t}} \right) ^{\frac{1}{\theta }} \end{aligned}$$

Next, suppose the incentive compatibility constraint is binding above the Friedman rule level. From (48):

$$\begin{aligned} \frac{r_{t}^{n^{*}}}{r_{t}^{m^{*}}}=\frac{\pi Nr\left( k_{t+1}^{*};N\right) k_{t+1}^{*}}{\left( 1-\pi \right) Nm_{t}\left( k_{t+1}^{*},\frac{P_{t+1}}{P_{t}};N\right) \frac{P_{t}}{P_{t+1}}}=1 \end{aligned}$$

which implies that:

$$\begin{aligned} m_{t}\left( k_{t+1}^{*},\frac{P_{t+1}}{P_{t}};N\right) =\frac{\pi }{ 1-\pi }r\left( k_{t+1}^{*};N\right) \frac{P_{t+1}}{P_{t}}k_{t+1}^{*} \end{aligned}$$
(49)

In addition, as \(m_{t}^{*}=\frac{1}{N}\left( w_{t}+\tau _{t}\right) -k_{t+1}^{*}\):

$$\begin{aligned} \frac{1}{N}\left( w_{t}+\tau _{t}\right) -k_{t+1}^{*}=\frac{\pi }{1-\pi } r\left( k_{t+1}^{*};N\right) \frac{P_{t+1}}{P_{t}}k_{t+1}^{*} \end{aligned}$$

or equivalently:

$$\begin{aligned} k_{t+1}^{*}=\frac{\frac{1}{N}\left( w_{t}+\tau _{t}\right) }{\left( 1+ \frac{\pi }{1-\pi }r\left( k_{t+1}^{*};N\right) \frac{P_{t+1}}{P_{t}} \right) } \end{aligned}$$

which is Eq. (17).

2. Proof of Proposition 1. The incentive compatibility constraint does not bind if \(I^{*}>\underline{I}\). Given our characterization of (29), \(I^{*}>\underline{I}\) if \(\Gamma \left( \underline{I}\right) >1\). Using the expression for \(\Gamma \left( \underline{I}\right) \), this condition holds if:

$$\begin{aligned} \left( \sigma \left[ 1-\frac{\left( 1-\alpha -\rho \right) }{N}\right] + \frac{\pi }{1-\pi }\right) \frac{\alpha }{\left( 1-\alpha \right) }>1 \end{aligned}$$

With some simple algebra, the condition can be written as \(\sigma >\frac{ \frac{1}{\alpha }-\frac{1}{1-\pi }}{1-\frac{\left( 1-\alpha -\rho \right) }{N }}=\underline{\sigma }_{2}\). Therefore, for all \(\sigma >\underline{\sigma } _{2}\), we have \(I^{*}>\underline{I}\) and \(\frac{r^{n^{*}}}{ r^{m^{*}}}>1\). Furthermore, the incentive compatibility constraint binds if \(I^{*}\in \left[ 1,\underline{I}\right] \). When \(\sigma =\underline{ \sigma }_{2}\), \(I^{*}=\underline{I}=\left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] ^{-1}\) and \(\frac{r^{n^{*}}}{r^{m^{*}}}=1\).

As discussed in the text, when the incentive compatibility constraint binds above the Friedman rule level, the solution to the problem yields \(I^{*}= \frac{\sigma }{\frac{1}{\alpha }-\frac{1}{1-\pi }}\). Therefore, \(I^{*}\ge 1\) if \(\frac{\sigma }{\frac{1}{\alpha }-\frac{1}{1-\pi }}\ge 1\), which can be rewritten as: \(\sigma \ge \frac{1}{\alpha }-\frac{1}{1-\pi }= \underline{\sigma }_{1}\). In this manner, \(\frac{r^{n^{*}}}{r^{m^{*}} }=1\) and \(I^{*}=\frac{\sigma }{\frac{1}{\alpha }-\frac{1}{1-\pi }}>1\) for all \(\sigma \in \left( \underline{\sigma }_{1},\underline{\sigma }_{2} \right] \). Finally, \(\frac{r^{n^{*}}}{r^{m^{*}}}=1\) and \(I^{*}=1\) for all \(\sigma \in \left( 0,\underline{\sigma }_{1}\right] \). In sum, the unique solution to polynomial, (29), \( I^{*}\) is such that: \(I^{*}\in \left[ 1,\underline{I}\right] \) and \( \frac{r^{n^{*}}}{r^{m^{*}}}=1\) if \(\sigma \in (0,\underline{\sigma } _{2}]\), whereas \(I^{*}>\underline{I}\) with \(\frac{r^{n^{*}}}{ r^{m^{*}}}>1\) if \(\sigma >\underline{\sigma }_{2}\). This completes the proof of Proposition 1.

3. Proof of Proposition 2. In the text, we discuss how bank activities are independent of the degree of concentration when the incentive compatibility constraint is binding, \(\sigma \in \left( 0,\underline{\sigma } _{2}\right] \). Therefore, we focus in the proof on case ii, where \( \sigma >\underline{\sigma }_{2}\). To begin, we use some simple algebra to rewrite the capital market clearing condition in the following manner. First, from (6) and (19):

$$\begin{aligned} m(k^{*};\sigma ,N)=\frac{k^{*}}{\frac{1-\pi }{\pi }\left[ 1-\frac{ \left( 1-\alpha -\rho \right) }{N}\right] ^{\frac{1}{\theta }}(I(k^{*};\sigma ,N))^{\frac{1-\theta }{\theta }}} \end{aligned}$$
(50)

Moreover, using (22), (23), the definition of \(I^{*}\), and the fact that \(K^{*}=Nk^{*}\) in (50), we get:

$$\begin{aligned} m(k^{*};\sigma ,N)= & {} \frac{k^{*}I(k^{*};N,\sigma )}{\frac{1-\pi }{ \pi }\left[ 1-\frac{\left( 1-\alpha -\rho \right) }{N}\right] ^{\frac{1}{ \theta }}(I(k^{*};\sigma ,N))^{\frac{1}{\theta }}} \\ m(k^{*};\sigma ,N)= & {} \frac{\frac{K^{*}}{N}\sigma \frac{\left( 1-\alpha \right) }{1-\alpha }\alpha AK^{*\alpha +\rho -1}}{\frac{1-\pi }{\pi } \left[ 1-\frac{\left( 1-\alpha -\rho \right) }{N}\right] ^{\frac{1}{\theta } }(I(k^{*};\sigma ,N))^{\frac{1}{\theta }}} \end{aligned}$$

Since \(w(k^{*};N)=\left( 1-\alpha \right) A(Nk^{*})^{\rho +\alpha }\):

$$\begin{aligned} Nm(k^{*};\sigma ,N)= & {} \frac{\sigma \frac{\alpha }{1-\alpha }w(k^{*};N) }{\frac{1-\pi }{\pi }\left[ 1-\frac{\left( 1-\alpha -\rho \right) }{N}\right] ^{\frac{1}{\theta }}(I(k^{*};\sigma ,N))^{\frac{1}{\theta }}} \nonumber \\ \frac{Nm(k^{*};\sigma ,N)}{\sigma w(k^{*};N)}= & {} \frac{1}{\frac{ 1-\alpha }{\alpha }\frac{1-\pi }{\pi }\left[ 1-\frac{\left( 1-\alpha -\rho \right) }{N}\right] ^{\frac{1}{\theta }}(I(k^{*};\sigma ,N))^{\frac{1}{ \theta }}} \end{aligned}$$
(51)

After substituting for the amount of transfers in equilibrium from (2), bank’s balance sheet constraint, (6), can be written as:

$$\begin{aligned} w(k^{*};N)-\left( \frac{1}{\sigma }\right) Nm(k^{*};\sigma ,N)=K^{*} \end{aligned}$$

In turn:

$$\begin{aligned} \frac{Nm(k^{*};\sigma ,N)}{\sigma w(k^{*};N)}=1-\frac{K^{*}}{ w(k^{*};N)} \end{aligned}$$

As a result, the aggregate supply of capital by the banking sector is such that:

$$\begin{aligned} \frac{K^{*1-\alpha -\rho }}{\left( 1-\alpha \right) A}=1-\frac{\pi }{ 1-\pi }\frac{\alpha }{1-\alpha }\frac{1}{\left[ 1-\frac{\left( 1-\alpha -\rho \right) }{N}\right] ^{\frac{1}{\theta }}(I(k^{*};\sigma ,N))^{ \frac{1}{\theta }}} \end{aligned}$$
(52)

where \(I^{*}=\sigma \alpha AK^{*\alpha +\rho -1}\). Thus, the aggregate stock of capital is a solution to the following polynomial:

$$\begin{aligned} \frac{K^{*1-\alpha -\rho }}{\left( 1-\alpha \right) A}=1-\frac{1}{\frac{ 1-\alpha }{\alpha }\frac{1-\pi }{\pi }\left[ 1-\frac{\left( 1-\alpha -\rho \right) }{N}\right] ^{\frac{1}{\theta }}\left( \alpha A\right) ^{\frac{1}{ \theta }}}\frac{K^{^{*}\frac{1-\rho -\alpha }{\theta }}}{\sigma ^{\frac{1 }{\theta }}} \end{aligned}$$
(53)

With some algebra, total differentiation of (53) with respect to N yields:

$$\begin{aligned} \frac{N}{K^{*}}\frac{\mathrm{d}K^{*}}{\mathrm{d}N}=\frac{\frac{\frac{\left( 1-\alpha -\rho \right) }{N}}{1-\frac{\left( 1-\alpha -\rho \right) }{N}}}{\frac{ \left( 1-\alpha -\rho \right) \theta K^{*1-\alpha -\rho }}{\left( 1-\alpha \right) A\left( 1-\frac{K^{*1-\alpha -\rho }}{\left( 1-\alpha \right) A}\right) }+\left( 1-\rho -\alpha \right) }>0 \end{aligned}$$
(54)

Since \(r^{*}(k^{*};N)=\alpha A\left( K^{*}\right) ^{\rho +\alpha -1\text { }}\)and \(\frac{\mathrm{d}K^{*}}{\mathrm{d}N}>0\), \(\frac{\mathrm{d}r^{*}}{\mathrm{d}N}<0\) and \( \frac{\mathrm{d}I^{*}}{\mathrm{d}N}<0\). We proceed to show the effect of N on \(\gamma ^{*}\) and \(\frac{r^{n^{*}}}{r^{m^{*}}}\). By definition of \( \gamma ^{*}\) and from bank’s balance sheet, (6):

$$\begin{aligned} \gamma ^{*}= & {} \frac{m(k^{*};N,\sigma )}{\frac{w(k^{*},N)+\tau (k^{*};N,\sigma )}{N}}=1-\frac{k^{*}}{\frac{w(k^{*};N)+\tau (k^{*};\sigma ,N)}{N}} \nonumber \\ \gamma ^{*}= & {} \frac{1-\frac{K^{*}}{w(k^{*};N)}+\frac{\sigma -1}{ \sigma }\frac{Nm(k^{*};\sigma ,N)}{w(k^{*};N)}}{1+\frac{\sigma -1}{ \sigma }\frac{Nm^{*}}{w^{*}}} \nonumber \\ \gamma ^{*}= & {} \frac{1}{\frac{1}{\sigma }\frac{1}{1-\frac{K^{*}}{ w\left( k^{*};N\right) }}+\frac{\sigma -1}{\sigma }} \end{aligned}$$
(55)

This suggests that each bank allocates smaller resources toward cash reserves when the banking sector is more competitive as \(\frac{K^{*}}{ w\left( k^{*};N\right) }=\frac{K^{*1-\alpha -\rho }}{\left( 1-\alpha \right) A}\) is increasing in N. As for the effects on risk-sharing, using (6) and (51) in (21), the relative return to depositors can be expressed as:

$$\begin{aligned} \frac{r^{n^{*}}}{r^{m^{*}}}=\frac{\pi }{1-\pi }\frac{\alpha }{ 1-\alpha }\frac{1}{\left( 1-\frac{K^{*}}{w\left( k^{*};N\right) } \right) } \end{aligned}$$
(56)

Therefore, higher N leads to higher \(K^{*}\) and less risk-sharing. This completes the proof of Proposition 2.

4. Proof of Proposition 3. The effect of a change in the rate of money growth on capital formation under case iii can be examined by differentiating (53) with respect to \(\sigma \) and some simplification:

$$\begin{aligned} \frac{\sigma }{K^{*}}\frac{\mathrm{d}K^{*}}{\mathrm{d}\sigma }=\frac{1}{\theta \left( 1-\alpha -\rho \right) }\frac{1}{\frac{1}{1-\frac{K^{*1-\alpha -\rho }}{ \left( 1-\alpha \right) A}}+\frac{1-\theta }{\theta }}>0 \end{aligned}$$
(57)

Moreover, from the polynomial for \(I^{*}\), (29), it is trivial to show that \(\frac{\mathrm{d}I^{*}}{\mathrm{d}\sigma }>0\). The impact of \(\sigma \) on \(\gamma ^{*}\) and \(\frac{r^{n^{*}}}{ r^{m^{*}}}\) directly follows. Finally, the effects of monetary policy when the incentive compatibility constraint is binding can be directly inferred from the closed-form solutions for \(K^{*}\) and \(I^{*}\) in the text. This completes the proof of Proposition 3.

5. Proof of Proposition 4. From (57), define \(z\left( K^{*}\right) =\frac{1}{1-\frac{K^{*1-\alpha -\rho }}{\left( 1-\alpha \right) A}}\) and differentiate (57) with respect to N:

$$\begin{aligned} \theta \left( 1-\alpha -\rho \right) \sigma \frac{d^{2}K^{*}}{\mathrm{d}\sigma \mathrm{d}N} =\frac{\left[ \left[ z\left( K^{*}\right) +\frac{1-\theta }{\theta } \right] -z^{\prime }\left( K^{*}\right) K^{*}\right] \frac{\mathrm{d}K^{*} }{\mathrm{d}N}}{\left[ z\left( K^{*}\right) +\frac{1-\theta }{\theta }\right] ^{2} } \end{aligned}$$

Given that \(\frac{\mathrm{d}K^{*}}{\mathrm{d}N}>0\), then \(\frac{\mathrm{d}^{2}K^{*}}{\mathrm{d}\sigma \mathrm{d}N} \ge 0\) if \(\left[ \left[ z\left( K^{*}\right) +\frac{1-\theta }{\theta } \right] -z^{\prime }\left( K^{*}\right) K^{*}\right] \ge 0\). Alternatively, \(\frac{d^{2}K^{*}}{\mathrm{d}\sigma \mathrm{d}N}<0\) if \(\left[ \left[ z\left( K^{*}\right) +\frac{1-\theta }{\theta }\right] -z^{\prime }\left( K^{*}\right) K^{*}\right] <0\). Using the definition of \( z\left( K^{*}\right) \), \(\frac{d^{2}K^{*}}{\mathrm{d}\sigma \mathrm{d}N}\ge 0\) if:

$$\begin{aligned} 1+\frac{1-\theta }{\theta }\left( 1-\frac{K^{*1-\alpha -\rho }}{\left( 1-\alpha \right) A}\right) \ge \frac{\frac{K^{*1-\alpha -\rho }}{A}}{1- \frac{K^{*1-\alpha -\rho }}{\left( 1-\alpha \right) A}} \end{aligned}$$
(58)

Define \(\chi \left( K^{*}\left( N\right) \right) =1+\frac{1-\theta }{ \theta }\left( 1-\frac{K^{*1-\alpha -\rho }}{\left( 1-\alpha \right) A} \right) \) and \(\Phi \left( K^{*}\left( N\right) \right) =\frac{\frac{ K^{*1-\alpha -\rho }}{A}}{1-\frac{K^{*1-\alpha -\rho }}{\left( 1-\alpha \right) A}}\). It is easily verified that \(\frac{\mathrm{d}\chi }{\mathrm{d}N}<0\) and \( \frac{\mathrm{d}\Phi }{\mathrm{d}N}>0\). The incentive compatibility constraint is non-binding if \(\sigma >\sigma _{2}\). Using the definition of \(\sigma _{2}\), this condition can be written as one on N, \(N>\frac{\left( 1-\alpha -\rho \right) }{1-\frac{\frac{1}{\alpha }-\frac{1}{1-\pi }}{\sigma }}=\underline{N} \), where at \(\underline{N}\), \(\frac{r^{n^{*}}}{r^{m^{*}}}=1\).

From the expression for the relative return to depositors, (21), and the expression for the supply of capital, (52), (52) can be expressed as:

$$\begin{aligned} \frac{K^{*1-\alpha -\rho }}{\left( 1-\alpha \right) A}=1-\frac{\pi }{ 1-\pi }\frac{\alpha }{1-\alpha }\frac{1}{\frac{r^{n^{*}}}{r^{m^{*}}}} \end{aligned}$$
(59)

Equilibrium condition, (59) at \(\underline{N }\), implies that:

$$\begin{aligned} \frac{K^{*}(\underline{N})^{1-\alpha -\rho }}{\left( 1-\alpha \right) A} =1-\frac{\pi }{1-\pi }\frac{\alpha }{1-\alpha } \end{aligned}$$

Using this information and some algebra, \(\chi \left( K^{*}\left( \underline{N}\right) \right) \ge \Phi \left( K^{*}\left( \underline{N} \right) \right) \) if:

$$\begin{aligned} \theta \le \frac{1}{\frac{1-\pi }{\pi }\frac{1-\alpha }{\alpha }\left[ \left( 1-\alpha \right) \frac{1-\pi }{\pi }\frac{1-\alpha }{\alpha }-\left( 2-\alpha \right) \right] +1}=\tilde{\theta } \end{aligned}$$
(60)

Next, evaluate at the upper bound on N. It is easy to see that \(\underset{ N\rightarrow \infty }{lim}K^{*}(N)\rightarrow \widetilde{K}^{*}\) as \( \widetilde{K}^{*}\) is simply the equilibrium capital stock under perfect competition. In order for a finite value of N such that \(\chi \left( K^{*}\left( N\right) \right) =\Phi \left( K^{*}\left( N\right) \right) \) to exist, we must show that:

$$\begin{aligned} \chi \left( \widetilde{K}^{*}\right) <\Phi \left( \widetilde{K}^{*}\right) \end{aligned}$$

or equivalently:

$$\begin{aligned} 1+\frac{1-\theta }{\theta }\left( 1-\frac{\widetilde{K}^{*1-\alpha -\rho }}{\left( 1-\alpha \right) A}\right) <\frac{\frac{\widetilde{K}^{*1-\alpha -\rho }}{A}}{1-\frac{\widetilde{K}^{*1-\alpha -\rho }}{\left( 1-\alpha \right) A}} \end{aligned}$$
(61)

By the Tobin effect, \(\chi \left( \widetilde{K}^{*}\right) \) is decreasing in \(\sigma \), while \(\Phi \left( \widetilde{K}^{*}\right) \) is increasing in \(\sigma \). We proceed to show that there exists a rate of money growth, \(\hat{\sigma }_{0}\) such that (61) holds.

Next, recall that:

$$\begin{aligned} \frac{r^{n^{*}}}{r^{m^{*}}}=\left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] ^{\frac{1}{\theta }}\left[ I^{*}\right] ^{^{\frac{1}{ \theta }}} \end{aligned}$$

From (29), it can be easily shown that \(I^{*} \rightarrow \infty \) as \(\sigma \rightarrow \infty \). Therefore, \(\frac{ r^{n^{*}}}{r^{m^{*}}}\rightarrow \infty \) as \(\sigma \rightarrow \infty \). Consequently, this implies that \(\widetilde{K}^{*}\) converges to \(\widetilde{K}_{1}^{*}\) as \(\sigma \rightarrow \infty \). From (59), \(\lim \limits _{\sigma \rightarrow \infty } \frac{\widetilde{K}^{*}}{w(k^{*};N)}=\frac{\widetilde{K}_{1}^{*}{}^{1-\alpha -\rho }}{\left( 1-\alpha \right) A}\rightarrow 1\) as \(\frac{ r^{n^{*}}}{r^{m^{*}}}\rightarrow \infty \).

From here, we can pin down \(\widetilde{K}_{1}^{*}:\)\(\widetilde{K} _{1}^{*}=\left[ \left( 1-\alpha \right) A\right] ^{\frac{1}{1-\alpha -\rho }}\). Thus, \(\chi \left( \widetilde{K}^{*}\right) <\Phi \left( \widetilde{K}^{*}\right) \) as \(\sigma \rightarrow \infty \). In addition, as \(N\rightarrow \infty \), \(\underline{\sigma }_{1}=\underline{\sigma }_{2}= \frac{1}{\alpha }-\frac{1}{1-\pi }\). As a result, at \(\underline{\sigma } _{1} \):

$$\begin{aligned} \frac{\widetilde{K}^{*}{}^{1-\alpha -\rho }}{\left( 1-\alpha \right) A} =1-\frac{\pi }{1-\pi }\frac{\alpha }{1-\alpha } \end{aligned}$$

Therefore, \(\chi \left( \widetilde{K}^{*}\right) |_{\sigma =\underline{ \sigma }_{1}}>\Phi \left( \widetilde{K}^{*}\right) |_{\sigma =\underline{ \sigma }_{1}}\) if (60) holds. In this manner, if (60) holds, a \(\hat{\sigma }_{0}\) such that \( \chi \left( \widetilde{K}^{*}\right) =\Phi \left( \widetilde{K}^{*}\right) \) exists. In sum, suppose \(\theta <\tilde{\theta }\). Under this condition, \(\frac{d^{2}K^{*}}{\mathrm{d}\sigma \mathrm{d}N}>0\) if \(\sigma <\hat{\sigma } _{0} \) as \(\chi \left( K^{*}\left( N\right) \right)>\)\(\Phi \left( K^{*}\left( N\right) \right) \)\(\forall \)\(N>\underline{N}\). By strict monotonicity of \(\chi \left( K^{*}\left( N\right) \right) \) and \(\Phi \left( K^{*}\left( N\right) \right) \) with respect to both \(\sigma \) and N, if \(\sigma >\hat{\sigma }_{0}\), \(\chi \left( K^{*}\left( N\right) \right) \) and \(\Phi \left( K^{*}\left( N\right) \right) \) intersect at a finite value of N, \(\hat{N}\)\(>\underline{N}\). This implies that \(\frac{ d^{2}K^{*}}{\mathrm{d}\sigma \mathrm{d}N}\ge \left( <\right) 0\) if \(N\le \left( >\right) \hat{N}\). This completes the proof of Proposition 4.

6. Proof of Proposition 5. We begin by differentiating (29) with respect to \(\rho \) and some simplification to get:

$$\begin{aligned} \frac{\mathrm{d}I^{*}}{\mathrm{d}\rho }=\frac{-\frac{1}{\theta }\frac{1}{N}\left[ 1-\frac{ \left( 1-\alpha -\rho \right) }{N}\right] ^{-1}}{\left( \frac{1-\theta }{ \theta }I^{*-1}+\frac{\left( 1-\alpha \right) }{\alpha }\frac{1}{\frac{ \left( 1-\alpha \right) I^{*}}{\alpha }-\sigma }\right) }<0 \end{aligned}$$
(62)

Next, we know that \(I^{*}=\sigma \alpha AK^{*\alpha +\rho -1}\). Taking the log and differentiating with respect to \(\rho \):

$$\begin{aligned} \ln K^{*}-\frac{1}{I^{*}}\frac{\mathrm{d}I^{*}}{\mathrm{d}\rho }=\left( 1-\rho -\alpha \right) \frac{1}{K^{*}}\frac{\mathrm{d}K^{*}}{\mathrm{d}\rho } \end{aligned}$$
(63)

As \(\frac{\mathrm{d}I^{*}}{\mathrm{d}\rho }<0\), if \(K^{*}>1\), then \(\ln K^{*}>0\) and \(\frac{\mathrm{d}K^{*}}{\mathrm{d}\rho }>0\). However, if \(K^{*}<1\), \(\ln K^{*}<0\) and \(\frac{\mathrm{d}K^{*}}{\mathrm{d}\rho }\) can be negative. For this comparative static, we choose to focus on cases where \(K^{*}>1\). From the polynomial yielding \(K^{*}\), (53), the term on the left-hand side (LHS) is increasing in K, while that on the right-hand side (RHS) is decreasing in K. Moreover, for a given K, as A rises, LHS falls, while RHS rises. Overall, \(\frac{\mathrm{d}K^{*}}{\mathrm{d}A}>0\). \(K^{*}>1\) if at \(K=1\), \(LHS<RHS\). This condition can be written as:

$$\begin{aligned} \frac{1}{\left( 1-\alpha \right) A}+\frac{1}{\frac{1-\alpha }{\alpha }\frac{ 1-\pi }{\pi }\left[ 1-\frac{\left( 1-\alpha -\rho \right) }{N}\right] ^{ \frac{1}{\theta }}\left( \alpha A\right) ^{\frac{1}{\theta }}}\frac{1}{ \sigma ^{\frac{1}{\theta }}}<1 \end{aligned}$$

Therefore, there exists an \(A_{0}\) such that this condition holds with equality. For \(A>A_{0}\), \(K^{*}>1\) and \(\frac{\mathrm{d}K^{*}}{\mathrm{d}\rho }>0\).

We proceed by examining the effects of \(\rho \) on risk-sharing. Taking the natural log of (21) and differentiating with respect to \(\rho \), we get:

$$\begin{aligned} \frac{1}{\frac{r^{n^{*}}}{r^{m^{*}}}}\frac{\mathrm{d}\frac{r^{n^{*}}}{ r^{m^{*}}}}{\mathrm{d}\rho }=\frac{1}{\theta }\frac{1}{\left[ N-\left( 1-\alpha -\rho \right) \right] }+\frac{1}{\theta }\frac{1}{I^{*}}\frac{\mathrm{d}I^{*} }{\mathrm{d}\rho } \end{aligned}$$

Therefore, \(\frac{\mathrm{d}\frac{r^{n^{*}}}{r^{m^{*}}}}{\mathrm{d}\rho }>0\) if:

$$\begin{aligned} \frac{\rho }{\left[ N-\left( 1-\alpha -\rho \right) \right] }>-\frac{\rho }{ I^{*}}\frac{\mathrm{d}I^{*}}{\mathrm{d}\rho } \end{aligned}$$
(64)

Substituting (62) into (64) along with some simplification, \(\frac{\mathrm{d}\frac{ r^{n^{*}}}{r^{m^{*}}}}{\mathrm{d}\rho }>0\) if:

$$\begin{aligned} -\sigma <0 \end{aligned}$$

The condition always holds given that \(\sigma >0\). This completes the proof of Proposition 5.

7. Proof of Proposition 6. We begin by deriving an expression for welfare over the range, \(\sigma \in \left( 0,\underline{\sigma }_{1}\right] \) . First, from (14) and (15), complete risk-sharing in a symmetric Nash equilibrium implies that:

$$\begin{aligned} \begin{aligned}&\frac{\delta _{t}(k_{t+1}^{*},\frac{P_{t+1}}{P_{t}};N)Nm_{t}(k_{t+1}^{ *},\frac{P_{t+1}}{P_{t}};N)}{\pi }\frac{P_{t}}{P_{t+1}} \\&\quad =\frac{N}{1-\pi } \left[ \begin{array}{c} r\left( k_{t+1}^{*};N\right) k_{t+1}^{*}+\left( 1-\delta _{t}(k_{t+1}^{*},\frac{P_{t+1}}{P_{t}};N)\right) \\ *m_{t}(k_{t+1}^{*},\frac{P_{t+1}}{P_{t}};N)\frac{P_{t}}{P_{t+1}} \end{array} \right] \end{aligned} \end{aligned}$$
(65)

Imposing that \(r\left( k_{t+1}^{*};N\right) =\frac{P_{t}}{P_{t+1}}\) at the Friedman rule:

$$\begin{aligned} \begin{aligned}&\frac{\delta _{t}\left( k_{t+1}^{*},\frac{P_{t+1}}{P_{t}};N\right) m_{t}\left( k_{t+1}^{ *},\frac{P_{t+1}}{P_{t}};N\right) }{\pi } \\&\quad =\frac{1}{1-\pi }\left[ k_{t+1}^{*}+\left( 1-\delta _{t}\left( k_{t+1}^{*},\frac{P_{t+1}}{P_{t}};N\right) \right) m_{t}\left( k_{t+1}^{*},\frac{P_{t+1}}{P_{t}};N\right) \right] \\&\qquad \delta _{t}\left( k_{t+1}^{*},\frac{P_{t+1}}{P_{t}};N\right) =\pi \left( \frac{ K_{t+1}^{*}}{Nm_{t}\left( k_{t+1}^{*},\frac{P_{t+1}}{P_{t}};N\right) }+1\right) \end{aligned} \end{aligned}$$
(66)

In the steady state:

$$\begin{aligned} \delta (k^{*};\sigma ,N)=\pi \left( \frac{K^{*}}{Nm(k^{*};\sigma ,N)}+1\right) \end{aligned}$$
(67)

where from (2) and (6) in the steady state we have:

$$\begin{aligned} \sigma \left( w\left( k^{*};N\right) -K^{*}\right) =Nm(k^{*};\sigma ,N) \end{aligned}$$

Upon using this information in (67):

$$\begin{aligned} \delta (k^{*};\sigma ,N)=\pi \left( \frac{\frac{K^{*}}{w\left( k^{*};N\right) }}{\sigma \left( 1-\frac{K^{*}}{w\left( k^{*};N\right) }\right) }+1\right) \end{aligned}$$
(68)

From (14), the consumption of a depositor in the steady state is such that:

$$\begin{aligned} r^{m^{*}}\left( w\left( k^{*};N\right) +\tau (k^{*};\sigma ,N)\right) =\frac{\delta ^{*}Nm(k^{*};\sigma ,N)}{\sigma \pi } \end{aligned}$$

Upon substituting for the expression of \(Nm(k^{*};\sigma ,N)\) and \( \delta (k^{*};\sigma ,N)\), it can be verified that:

$$\begin{aligned} r^{m^{*}}\left( w\left( k^{*};N\right) +\tau (k^{*};\sigma ,N)\right) =\left( \frac{1}{\sigma }-1\right) K^{*}+w\left( k^{*};N\right) \end{aligned}$$
(69)

Furthermore, using (22) and the fact that \( K^{*} =\left( \alpha A\sigma \right) ^{\frac{1}{1-\alpha -\rho }}\) in (69):

$$\begin{aligned} c^{m}(k^{*};\sigma ,N)=r^{m^{*}}\left( w\left( k^{*};N\right) +\tau (k^{*};\sigma ,N)\right) =\alpha ^{\frac{1}{1-\alpha -\rho }}A^{ \frac{1}{1-\alpha -\rho }}\left( \frac{1}{\alpha }-\sigma \right) \sigma ^{ \frac{\alpha +\rho }{1-\alpha -\rho }} \end{aligned}$$
(70)

Given that \(c^{m}(k^{*};\sigma ,N)=c^{n}(k^{*};\sigma ,N)=c(k^{*};\sigma ,N)\), the expected utility of a depositor over this parameter space is:

$$\begin{aligned} U^{*}=\frac{1}{1-\theta }c(k^{*};\sigma ,N)^{1-\theta } \end{aligned}$$
(71)

which is identical to the one presented in the text upon substituting for the expression for \(c(k^{*},\sigma ;N)\) above.

Next, differentiate (71) with respect to \(\sigma \) to obtain:

$$\begin{aligned} \frac{\mathrm{d}U^{*}}{\mathrm{d}\sigma }=c(k^{*};\sigma ,N)^{-\theta }\alpha ^{\frac{1 }{1-\alpha -\rho }}A^{\frac{1}{1-\alpha -\rho }}\left[ -1+\frac{\alpha +\rho }{1-\alpha -\rho }\sigma ^{-1}\left( \frac{1}{\alpha }-\sigma \right) \right] \sigma ^{\frac{\alpha +\rho }{1-\alpha -\rho }} \end{aligned}$$
(72)

Since \(c(k^{*};\sigma ,N)\) and \(\sigma \) are positive, \(\frac{\mathrm{d}U^{*} }{\mathrm{d}\sigma }>0\) if the term in solid brackets is positive. Simple algebra implies that \(\frac{\mathrm{d}U^{*}}{\mathrm{d}\sigma }\ge 0\) if \(\sigma \le \frac{ \alpha +\rho }{\alpha }\). Upon using the definition of \(\underline{\sigma } _{1}\), \(\underline{\sigma }_{1}\ge \frac{\alpha +\rho }{\alpha }\) if:

$$\begin{aligned} \frac{1}{\alpha }-\frac{1}{1-\pi }\ge \frac{\alpha +\rho }{\alpha } \end{aligned}$$

With some simplification, the condition above can be written as:

$$\begin{aligned} \rho \le 1-\left( \frac{2-\pi }{1-\pi }\right) \alpha =\hat{\rho } \end{aligned}$$

Therefore, under this condition, \(\frac{\mathrm{d}U^{*}}{\mathrm{d}\sigma }\ge \left( <\right) 0\) if \(\sigma \le \left( >\right) \frac{\alpha +\rho }{\alpha }\) and a local optimum is present. By comparison, if \(\rho >\hat{\rho }\), \(\frac{ \mathrm{d}U^{*}}{\mathrm{d}\sigma }>0 \sigma \in \left( 0,\underline{\sigma }_{1}\right) \).

It is important to highlight from (70) that consumption is positive if \(\sigma <\frac{1}{\alpha }\). It suffices to show that: \(\underline{\sigma }_{1}<\frac{1}{\alpha }\). Upon using the definition of \(\underline{\sigma }_{1}\), \(\underline{\sigma }_{1}<\frac{1}{ \alpha }\) if \(\frac{1}{\alpha }-\frac{1}{1-\pi }<\frac{1}{\alpha }\). This condition can be written as: \(-\frac{\pi }{1-\pi }<0\), which always holds. Also notice that we need \(\delta ^{*}<1\). Using (68) and some algebra, this condition can be written as:

$$\begin{aligned} 1<\frac{1-\pi }{\pi }\sigma \left( \frac{w\left( k^{*};N\right) }{ K^{*}}-1\right) \end{aligned}$$

where \(\frac{K^{*}}{w\left( k^{*};N\right) }=\frac{K^{*1-\alpha -\rho }}{\left( 1-\alpha \right) A}=\frac{\alpha }{\left( 1-\alpha \right) r^{*}}=\frac{\alpha \sigma }{\left( 1-\alpha \right) I}=\frac{\alpha \sigma }{\left( 1-\alpha \right) }\) as \(I=1\) over this parameter space. Upon using this information, \(\delta ^{*}<1\) if:

$$\begin{aligned} \sigma <\frac{1}{\alpha }-\frac{1}{1-\pi }=\underline{\sigma }_{1} \end{aligned}$$

Next, from our work in the text, welfare does not vary with \(\sigma \) if \( \sigma \in (\underline{\sigma }_{1},\underline{\sigma }_{2})\). We proceed by deriving the expression for welfare, (30), under \( \sigma \ge \underline{\sigma }_{2}\). From a bank’s problem, we substitute resource constraints, (7)–(9), and the expression for rental rate, (23), into expected utility function, (5), to get:

$$\begin{aligned} U^{*}=\frac{\pi \left[ \frac{N}{\pi }\frac{1}{\sigma }m^{*}\right] ^{1-\theta }+\left( 1-\pi \right) \left[ \frac{1}{1-\pi }\alpha AK^{*\rho +\alpha }\right] ^{1-\theta }}{1-\theta } \end{aligned}$$
(73)

Subsequently, using the expression for \(\frac{Nm(k^{*};N,\sigma )}{ w\left( k^{*};N\right) }\frac{1}{\sigma }\) from (51) and the fact that \(I^{*}=\sigma \alpha AK^{*\rho +\alpha -1}\) we obtain the expression for welfare in the text, (30), for all under \(\sigma > \underline{\sigma }_{2}\).

We proceed to differentiate (30) with respect to \( \sigma \) to get:

$$\begin{aligned} \frac{\mathrm{d}U^{*}}{\mathrm{d}\sigma }=\frac{\frac{\pi \left( \frac{\left[ 1-\left( \rho +\alpha \right) \left( 1-\theta \right) \right] \left( 1-\theta \right) }{\theta }\frac{1}{K^{*}}\frac{\mathrm{d}K^{*}}{\mathrm{d}\sigma }-\frac{1-\theta }{ \theta }\frac{1}{\sigma }\right) }{\left[ 1-\frac{\left( 1-\alpha -\rho \right) }{N}\right] ^{\frac{1-\theta }{\theta }}\left( \alpha A\right) ^{ \frac{1-\theta }{\theta }}\sigma ^{\frac{1-\theta }{\theta }}}K^{*\frac{ \left[ 1-\left( \rho +\alpha \right) \left( 1-\theta \right) \right] \left( 1-\theta \right) }{\theta }} +\left( \rho +\alpha \right) \left( 1-\theta \right) \left( 1-\pi \right) (K^{*})^{\left( \rho +\alpha \right) \left( 1-\theta \right) -1}\frac{\mathrm{d}K^{*}}{\mathrm{d}\sigma }}{\frac{\left( 1-\theta \right) \left( 1-\pi \right) ^{1-\theta }}{\left[ \alpha A\right] ^{1-\theta }}} \end{aligned}$$

With some simplifying algebra, \(\frac{\mathrm{d}U^{*}}{\mathrm{d}\sigma }\ge 0\) if:

$$\begin{aligned} \frac{\sigma }{K^{*}}\frac{\mathrm{d}K^{*}}{\mathrm{d}\sigma }\ge \frac{1}{\left[ 1-\left( \rho +\alpha \right) \left( 1-\theta \right) \right] +\left( \rho +\alpha \right) \theta \frac{1-\pi }{\pi }\left( \sigma ^{\frac{1}{\theta }} \left[ 1-\frac{\left( 1-\alpha -\rho \right) }{N}\right] ^{\frac{1}{\theta } }\left( \alpha A\right) ^{\frac{1}{\theta }}K^{*\left[ \frac{-1+\left( \rho +\alpha \right) }{\theta }\right] }\right) ^{1-\theta }} \end{aligned}$$
(74)

From the polynomial yielding \(K^{*}\), (53), we have:

$$\begin{aligned} \sigma ^{\frac{1}{\theta }}\left[ 1-\frac{\left( 1-\alpha -\rho \right) }{N} \right] ^{\frac{1}{\theta }}\left( \alpha A\right) ^{\frac{1}{\theta }}= \frac{1}{\frac{1-\alpha }{\alpha }\frac{1-\pi }{\pi }}\frac{K^{*\frac{ 1-\rho -\alpha }{\theta }}}{1-\frac{K^{*1-\alpha -\rho }}{\left( 1-\alpha \right) A}} \end{aligned}$$

Substituting into (74) along with some simplification, the condition becomes:

$$\begin{aligned} \frac{\sigma }{K^{*}}\frac{\mathrm{d}K^{*}}{\mathrm{d}\sigma }\ge \frac{1}{\left[ 1-\left( \rho +\alpha \right) \left( 1-\theta \right) \right] +\left( \rho +\alpha \right) \theta \left( \frac{1-\pi }{\pi }\right) ^{\theta }\left( \frac{\alpha }{1-\alpha }\frac{1}{1-\frac{K^{*1-\alpha -\rho }}{\left( 1-\alpha \right) A}}\right) ^{1-\theta }} \end{aligned}$$

Finally, using the expression for \(\frac{\sigma }{K^{*}} \frac{\mathrm{d}K^{*} }{\mathrm{d}\sigma }\) from (57), \(\frac{\mathrm{d}U^{*}}{\mathrm{d}\sigma }\ge 0\) if:

$$\begin{aligned} \begin{aligned} \psi \left( \sigma \right)&\equiv \left( 1-\frac{K^{*1-\alpha -\rho }}{ \left( 1-\alpha \right) A}\right) +\left( \rho +\alpha \right) \left( \frac{ 1-\pi }{\pi }\right) ^{\theta }\left( \frac{\alpha }{1-\alpha }\right) ^{1-\theta } \\&\quad \left( 1-\frac{K^{*1-\alpha -\rho }}{\left( 1-\alpha \right) A}\right) ^{\theta }\ge \left( 1-\alpha -\rho \right) \end{aligned} \end{aligned}$$
(75)

Given that \(\frac{\mathrm{d}K^{*}}{\mathrm{d}\sigma }>0\), \(\psi ^{\prime }\left( \sigma \right) <0\). Furthermore, from (59), \(\lim \limits _{\sigma \rightarrow \infty }\frac{K^{*}}{w\left( k^{*};N\right) }\rightarrow 1\) as \(\frac{r^{n^{*}}}{r^{m^{*}}} \rightarrow \infty \), where \(\frac{K^{*}}{w\left( k^{*};N\right) }= \frac{K^{*1-\alpha -\rho }}{\left( 1-\alpha \right) A}\). Therefore, \(\lim \limits _{\sigma \rightarrow \infty } \psi \rightarrow 0\). In addition, \(1-\frac{K^{*1-\alpha -\rho }}{\left( 1-\alpha \right) A}= \frac{\alpha }{1-\alpha }\frac{\pi }{1-\pi }\) when \(\sigma =\underline{ \sigma }_{2}\). Upon using this information, \(\psi \left( \underline{\sigma } _{2}\right) =\left( \frac{\pi }{1-\pi }+\left( \rho +\alpha \right) \right) \frac{\alpha }{1-\alpha }\).

From our characterization of \(\psi \), \(\psi \left( \sigma \right) \le \left( 1-\alpha -\rho \right) \) for all \(\sigma \ge \underline{\sigma }_{2}\) if \(\psi \left( \underline{\sigma }_{2}\right) \le \left( 1-\alpha -\rho \right) \). Using some algebra, this condition can be written as: \(\rho \le 1-\alpha \left( \frac{2-\pi }{1-\pi }\right) =\hat{\rho }\). In this manner, if \(0<\rho \le \hat{\rho }\), \(\frac{\mathrm{d}U^{*}}{\mathrm{d}\sigma }\le 0\) for all \( \sigma \ge \underline{\sigma }_{2}\). Given our characterization of the welfare function over the ranges of \(\sigma \in \left( 0,\underline{\sigma } _{2}\right) \), \(\sigma ^{*}=\frac{\alpha +\rho }{\alpha }\) is a global optimum.

Next, suppose \(\rho>\hat{\rho }\Longleftrightarrow \psi \left( \underline{ \sigma }_{2}\right) >\left( 1-\alpha -\rho \right) \). Under this condition there exists an (interior) value of \(\sigma > \underline{\sigma }_{2}\), \( \sigma ^{*}:\psi \left( \sigma \right) =\left( 1-\alpha -\rho \right) \). For all \(\sigma > \sigma ^{*}\), \(\frac{\mathrm{d}U^{*}}{\mathrm{d}\sigma }<0\) and for all \(\underline{\sigma }_{2}\le \sigma \le \sigma ^{*}\), \(\frac{ \mathrm{d}U^{*}}{\mathrm{d}\sigma }\ge 0\). Since \(\frac{\mathrm{d}U^{*}}{\mathrm{d}\sigma }>0\) if \( \sigma \in (0,\underline{\sigma }_{1})\) and \(\frac{\mathrm{d}U^{*}}{\mathrm{d}\sigma }=0\) if \(\sigma \in [\underline{\sigma }_{1},\underline{\sigma }_{2})\), the optimal value of \(\sigma \) is such that \(\sigma ^{*}>\underline{ \sigma }_{2}\). Additionally, for a given value of \(\sigma \ge \underline{ \sigma }_{2}\), \(\frac{\partial \psi }{\partial N}<0\) (since \(\frac{\mathrm{d}K^{*} }{\mathrm{d}N}>0\) over that range). That is, for a given \(\sigma \), the locus shifts down. As a result \(\frac{\mathrm{d}\sigma ^{*}}{\mathrm{d}N}<0\). This completes the proof of Proposition 6.

8. Proof of Proposition 7. Suppose \(\sigma > \underline{\sigma }_{2}\). Differentiating welfare function (30) with respect to N and some simplification yields:

$$\begin{aligned} \frac{\mathrm{d}U^{*}}{\mathrm{d}N}=\frac{ \begin{array}{c} \frac{\pi \left( \frac{\left[ 1-\left( \rho +\alpha \right) \left( 1-\theta \right) \right] }{\theta }\frac{\mathrm{d}K^{*}(N)}{\mathrm{d}N}-\frac{\left( 1-\alpha -\rho \right) }{N}\frac{1}{\theta }\left[ 1-\frac{\left( 1-\alpha -\rho \right) }{N}\right] ^{-1}\right) K^{*}(N)^{\frac{\left[ 1-\left( \rho +\alpha \right) \left( 1-\theta \right) \right] \left( 1-\theta \right) }{ \theta }}}{\left( \alpha A\right) ^{\frac{1-\theta }{\theta }}\sigma ^{\frac{ 1-\theta }{\theta }}\left[ 1-\frac{\left( 1-\alpha -\rho \right) }{N}\right] ^{\frac{1-\theta }{\theta }}}+ \\ \left( \rho +\alpha \right) \left( 1-\pi \right) K^{*}(N)^{\left( \rho +\alpha \right) \left( 1-\theta \right) -1}\frac{\mathrm{d}K^{*}(N)}{\mathrm{d}N} \end{array} }{\left( \frac{1-\pi }{\alpha A}\right) ^{1-\theta }} \end{aligned}$$

Next, with some algebra, \(\frac{\mathrm{d}U^{*}}{\mathrm{d}N}\ge 0\) if:

$$\begin{aligned} \begin{aligned}&\frac{N}{K^{*}(N)}\frac{\mathrm{d}K^{*}(N)}{\mathrm{d}N} \\&\quad \ge \frac{\frac{\frac{\left( 1-\alpha -\rho \right) }{N}}{1-\frac{\left( 1-\alpha -\rho \right) }{N}}}{ \begin{array}{c} \left[ 1-\left( \rho +\alpha \right) \left( 1-\theta \right) \right] + \\ \left( \rho +\alpha \right) \left( \alpha A\right) ^{\frac{1-\theta }{\theta }}\sigma ^{\frac{1-\theta }{\theta }}\theta \left( \frac{1-\pi }{\pi } \right) \left[ 1-\frac{\left( 1-\alpha -\rho \right) }{N}\right] ^{\frac{ 1-\theta }{\theta }}(K^{*}(N))^{-\left[ \frac{1-\left( \rho +\alpha \right) }{\theta }\right] \left( 1-\theta \right) } \end{array}} \end{aligned} \end{aligned}$$
(76)

Upon using the polynomial yielding \(K^{*}(N)\), (53), condition (76) can be written as:

$$\begin{aligned} \frac{N}{K^{*}(N)}\frac{\mathrm{d}K^{*}(N)}{\mathrm{d}N}\ge \frac{\frac{\frac{\left( 1-\alpha -\rho \right) }{N}}{1-\frac{\left( 1-\alpha -\rho \right) }{N}}}{ \left[ 1-\left( \rho +\alpha \right) \left( 1-\theta \right) \right] +\left( \rho +\alpha \right) \theta \left( \frac{1-\pi }{\pi }\right) ^{\theta } \frac{\left( \frac{\alpha }{1-\alpha }\right) ^{1-\theta }}{\left( 1-\frac{ K^{*}(N)^{1-\alpha -\rho }}{\left( 1-\alpha \right) A}\right) ^{1-\theta }}} \end{aligned}$$

Furthermore, substituting for \(\frac{N}{K^{*}}\frac{\mathrm{d}K^{*} (N)}{\mathrm{d}N}\) from (54), \(\frac{\mathrm{d}U^{*}}{\mathrm{d}N}\ge 0\) if:

$$\begin{aligned} \begin{aligned} \Phi \left( N\right)&\equiv \left[ 1+\left( \frac{1-\pi }{\pi }\right) ^{\theta }\left( \frac{\alpha }{1-\alpha }\right) ^{1-\theta }\left( 1-\frac{ K^{*}(N)^{1-\alpha -\rho }}{\left( 1-\alpha \right) A}\right) ^{\theta } \right] \frac{1}{K^{*}(N)^{1-\alpha -\rho }} \\&\ge \frac{1}{\left( \rho +\alpha \right) \left( 1-\alpha \right) A} \end{aligned} \end{aligned}$$
(77)

Given that \(\frac{\mathrm{d}K^{*}(N)}{\mathrm{d}N}>0\), \(\Phi ^{\prime }\left( N\right) <0\) . The incentive compatibility constraint is non-binding when \(\sigma > \underline{\sigma }_{2}=\frac{\frac{1}{\alpha }-\frac{1}{1-\pi }}{1-\frac{ \left( 1-\alpha -\rho \right) }{N}}\), which can also be written as a condition on N. In particular, the incentive compatibility constraint does not bind if \(N>\frac{\left( 1-\alpha -\rho \right) }{1-\frac{\frac{1}{\alpha }-\frac{1}{1-\pi }}{\sigma }}=\underline{N}\). We proceed to evaluate \(\Phi \) at the lower bound on N, \(\Phi \left( \underline{N}\right) \). From equilibrium condition, (59) at \(\underline{N}\), we have:

$$\begin{aligned} \frac{K^{*}(\underline{N})^{1-\alpha -\rho }}{\left( 1-\alpha \right) A} =1-\frac{\pi }{1-\pi }\frac{\alpha }{1-\alpha } \end{aligned}$$

Upon substituting into the expression for \(\Phi \) along with some simplifying steps:

$$\begin{aligned} \Phi \left( \underline{N}\right) =\frac{1}{1-\alpha }\frac{1}{\left( 1-\frac{ \pi }{1-\pi }\frac{\alpha }{1-\alpha }\right) \left( 1-\alpha \right) A} \end{aligned}$$

It is easily verified that \(\Phi \left( \underline{N}\right) \le \frac{1}{ \left( \rho +\alpha \right) \left( 1-\alpha \right) A}\) if \(\rho \le 1-\alpha \left( \frac{2-\pi }{1-\pi }\right) =\hat{\rho }\). As \(\Phi ^{\prime }\left( N\right) <0\), \(\Phi \left( N\right) \) lies below the \(\frac{1}{\left[ \left( \rho +\alpha \right) \left( 1-\alpha \right) A\right] }\) line and \( \frac{\mathrm{d}U^{*}}{\mathrm{d}N}\le 0\) for all \(N\ge \underline{N}\). Given that \( \frac{\mathrm{d}U^{*}}{\mathrm{d}N}=0\) for \(N<\underline{N}\), optimal \(N:N^{*}\in \left( 1,\underline{N}\right] \).

By comparison, \(\Phi \left( \underline{N}\right) >\frac{1}{\left( \rho +\alpha \right) \left( 1-\alpha \right) A}\) if \(\rho > \hat{\rho }\). This implies that if the external effects from capital formation are sufficiently strong, the optimal number of banks exceeds \(\underline{N}\). In fact, we next seek to find conditions in which perfect competition is optimal. To do so, we evaluate \(\Phi \) under perfect competition, which we denote as \( \underline{\Phi }\). Recall from the proof of Proposition 4 that \(\widetilde{K }^{*}\) is the equilibrium value of K as \(N\rightarrow \infty \). From the polynomial yielding \(K^{*}\), (53), \(\widetilde{K}^{*}\) is such that:

$$\begin{aligned} \left( 1-\frac{\widetilde{K}^{*1-\alpha -\rho }}{\left( 1-\alpha \right) A}\right) ^{\theta }=\frac{\widetilde{K}^{*1-\alpha -\rho }}{\left( \frac{1-\alpha }{\alpha }\frac{1-\pi }{\pi }\right) ^{\theta }\sigma \alpha A } \end{aligned}$$

Upon substituting into \(\Phi \) and some simplification, we get:

$$\begin{aligned} \underset{N\rightarrow \infty }{\lim }\Phi =\left[ \frac{1}{\widetilde{K}^{*1-\alpha -\rho }}+\frac{\alpha }{1-\alpha }\frac{1}{\sigma \alpha A} \right] \equiv \underline{\Phi } \end{aligned}$$

Next, we evaluate \(\underline{\Phi }\) at the lower bound on \(\sigma \). As \( N\rightarrow \infty \), \(\underline{\sigma }_{1}=\underline{\sigma }_{2}= \frac{1}{\alpha }-\frac{1}{1-\pi }\), which corresponds to \(\frac{r^{n^{*}}}{r^{m^{*}}}=1\). Substituting this information into (59),

$$\begin{aligned} \frac{1}{\widetilde{K}^{*1-\alpha -\rho }}=\frac{\frac{1-\alpha }{\alpha }\frac{1-\pi }{\pi }}{\frac{1-\alpha }{\alpha }\frac{1-\pi }{\pi }-1}\frac{1 }{\left( 1-\alpha \right) A} \end{aligned}$$

Upon substituting into \(\underline{\Phi }\) and some simplification, we obtain:

$$\begin{aligned} \underline{\Phi }|_{\sigma =\underline{\sigma }_{1}}=\frac{1}{\alpha }\frac{1 }{\frac{1}{\alpha }-\frac{1}{1-\pi }}\frac{1}{\left( 1-\alpha \right) A} \end{aligned}$$

It can be easily verified that \(\underline{\Phi }|_{\sigma =\underline{ \sigma }_{1}}>\frac{1}{\left( \rho +\alpha \right) \left( 1-\alpha \right) A} \) if \(\rho >\hat{\rho }\). Further, note that \(\Phi \) is decreasing in \( K^{*}(N)\). As shown in Proposition 3, money growth exhibits a Tobin effect over the range from 0 to \(\underline{\sigma }_{1}\). As a result, for rates of money growth below \(\underline{\sigma }_{1}\), \(\Phi \) exceeds \(\underline{\Phi }|_{\sigma =\underline{\sigma }_{1}}\). This establishes that perfect competition is optimal if the rate of money growth is sufficiently low, \(\sigma \le \underline{\sigma }_{1}=\underline{\sigma }_{2}\).

We finish by finding conditions in which perfect competition does not maximize welfare. For an interior solution, \(\tilde{N}\) to exist, \(\Phi \left( N\right) \) must lie below the \(\frac{1}{\left[ \left( \rho +\alpha \right) \left( 1-\alpha \right) A\right] }\) line over a certain range of N . We define \(\tilde{N}\) to be the number of banks such that \(\Phi \left( \tilde{N}\right) =\frac{1}{\left( \rho +\alpha \right) \left( 1-\alpha \right) A}\). In other words, \(\tilde{N}\) is the number of intermediaries which provides an interior solution to the first-order condition for the social welfare function in (73). In order to prove that an \( \tilde{N}\) can exist, we need to find conditions where \(\underline{\Phi }< \frac{1}{\left( \rho +\alpha \right) \left( 1-\alpha \right) A}\). By the Tobin effect, \(\frac{\mathrm{d}\underline{\Phi }}{\mathrm{d}\sigma }<0\). We proceed to show that there exists a rate of money growth, \(\hat{\sigma }\), beyond which, \( \underline{\Phi } <\frac{1}{\left( \rho +\alpha \right) \left( 1-\alpha \right) A}\).

First, with some simple algebra, we rewrite \(\underline{\Phi }\) as:

$$\begin{aligned} \underline{\Phi }=\frac{1}{\left( 1-\alpha \right) A}\left[ \frac{\widetilde{ K}^{*}}{w(\widetilde{k}^{*};N)}+\frac{1}{\sigma A}\right] \end{aligned}$$

From (59), \(\lim \limits _{\sigma \rightarrow \infty } \frac{\widetilde{K}^{*}}{w(\widetilde{k}^{*};N)}\rightarrow 1 \) as \(\frac{r^{n^{*}}}{r^{m^{*}}}\rightarrow \infty \). Therefore, \( \frac{\widetilde{K}^{*}}{w(\widetilde{k}^{*};N)}\rightarrow 1\) as \( \sigma \rightarrow \infty \) and \(\lim \limits _{\sigma \rightarrow \infty } \underline{\Phi }\rightarrow \frac{1}{\left( 1-\alpha \right) A}\), which is clearly less than \(\frac{1}{\left( \rho +\alpha \right) \left( 1-\alpha \right) A}\).

In sum, when \(\rho >\hat{\rho }\) and \(\sigma \le \underline{\sigma }_{1}= \underline{\sigma }_{2}\), \(\underline{\Phi }|_{\sigma =\underline{\sigma } _{1}}>\frac{1}{\left( \rho +\alpha \right) \left( 1-\alpha \right) A}\) which implies that perfect competition is optimal. However, there also exists a \(\hat{\sigma }>\underline{\sigma }_{1}\), such that for all \(\sigma > \hat{\sigma }\), \(\underline{\Phi }<\frac{1}{\left( \rho +\alpha \right) \left( 1-\alpha \right) A}\). Therefore, for \(\sigma >\hat{\sigma }\), (77) has an interior solution, \(\tilde{N}>\underline{N}\), where \(\tilde{N}:\Phi \left( \tilde{N}\right) =\frac{1}{\left( \rho +\alpha \right) \left( 1-\alpha \right) A}\). Consequently, for \(\sigma \le \hat{\sigma }\), perfect competition is optimal. For all \(N\in [\underline{N},\tilde{N})\), \( \frac{\mathrm{d}U^{*}}{\mathrm{d}N}>0\) and \(\frac{\mathrm{d}U^{*}}{\mathrm{d}N}<0\) for \(N>\tilde{N}\). In this manner, optimal N is such that \(N^{*}=\tilde{N}\). Moreover, \( \frac{\mathrm{d}\tilde{N}}{\mathrm{d}\sigma }<0\) as \(\Phi \) shifts downward under higher values of \(\sigma \). The result in the Proposition directly follows. This completes the proof of Proposition 7.

9. A typical bank’s problem when seigniorage revenues are rebated to both young and old agents:

We begin by solving the problem when the self-selection constraint is non-binding. Upon substitution for payments to movers and non-movers from (34)–(36) into objective function, (33), the problem is reduced to a choice of \(k_{t+1}:\)

$$\begin{aligned} \underset{k_{t+1}}{\mathrm{Max}}\ \frac{\pi \left[ \frac{N}{\pi }\frac{P_{t}}{P_{t+1}} \left( \frac{1}{N}\left( w_{t}+\lambda \tau _{t}\right) -k_{t+1}\right) +\left( 1-\lambda \right) \tau _{t+1}\right] ^{1-\theta }+\left( 1-\pi \right) \left[ \frac{Nr\left( k_{t+1},K_{t+1}^{N-1}\right) k_{t+1}}{1-\pi } +\left( 1-\lambda \right) \tau _{t+1}\right] ^{1-\theta }}{1-\theta } \end{aligned}$$

The first-order condition with respect to \(k_{t+1}\) is such that:

$$\begin{aligned} \begin{aligned}&-\pi \left( c_{t}^{m}\right) ^{-\theta }\frac{N}{\pi }\frac{P_{t}}{P_{t+1}} +\left( 1-\pi \right) \left( c_{t}^{n}\right) ^{-\theta }\frac{N}{1-\pi } \\&\quad \left[ r\left( k_{t+1}\right) +\frac{\partial r\left( k_{t+1},K_{t+1}^{N-1}\right) }{\partial K_{t+1}}\frac{\partial K_{t+1}}{\partial k_{t+1}}k_{t+1}\right] =0 \end{aligned} \end{aligned}$$
(78)

where \(c_{t}^{m}=\frac{N}{\pi }\frac{P_{t}}{P_{t+1}}\left( \frac{1}{N}\left( w_{t}+\lambda \tau _{t}\right) -k_{t+1}\right) +\left( 1-\lambda \right) \tau _{t+1}\) and \(c_{t}^{n}=\frac{Nr\left( k_{t+1},K_{t+1}^{N-1}\right) k_{t+1}}{1-\pi }+\left( 1-\lambda \right) \tau _{t+1}\). From our derivations of the benchmark model, \(\frac{\partial r\left( k_{t+1},K_{t+1}^{N-1}\right) }{\partial K_{t+1}}=-\left( 1-\rho -\alpha \right) r\left( k_{t+1},K_{t+1}^{N-1}\right) K_{t+1}^{-1}\). Upon using this information in (78):

$$\begin{aligned} -\left( c_{t}^{m}\right) ^{-\theta }\frac{P_{t}}{P_{t+1}}+\left( c_{t}^{n}\right) ^{-\theta }\left[ 1-\left( 1-\rho -\alpha \right) K_{t+1}^{-1}k_{t+1}\right] r\left( k_{t+1},K_{t+1}^{N-1}\right) =0 \end{aligned}$$

Imposing symmetry, it is easy to verify that:

$$\begin{aligned} \frac{c_{t}^{n^{*}}}{c_{t}^{m^{*}}}=\left( \left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] r\left( k_{t+1}^{*};N\right) \frac{ P_{t+1}}{P_{t}}\right) ^{\frac{1}{\theta }} \end{aligned}$$
(79)

which is identical to (39) in the steady state.

We proceed to get an expression for the amount of money balances. From the expressions for consumption of each type of depositor, we have:

$$\begin{aligned} c_{t}^{m^{*}}=\frac{N}{\pi }m_{t}^{*}\frac{P_{t}}{P_{t+1}}+\left( 1-\lambda \right) \tau _{t+1} \end{aligned}$$

and

$$\begin{aligned} c_{t}^{n^{*}}=\frac{N}{1-\pi }r\left( k_{t+1}^{*};N\right) k_{t+1}^{*}+\left( 1-\lambda \right) \tau _{t+1} \end{aligned}$$

Substituting from (79):

$$\begin{aligned} \begin{aligned} \frac{N}{1-\pi }r\left( k_{t+1}^{*};N\right) k_{t+1}^{*}+\left( 1-\lambda \right) \tau _{t+1}&=\left[ \frac{N}{\pi }m_{t}^{*}\frac{P_{t}}{ P_{t+1}}+\left( 1-\lambda \right) \tau _{t+1}\right] \\&\quad \left( \left[ 1-\frac{ \left( 1-\rho -\alpha \right) }{N}\right] r\left( k_{t+1}^{*};N\right) \frac{P_{t+1}}{P_{t}}\right) ^{\frac{1}{\theta }} \end{aligned} \end{aligned}$$
(80)

Imposing steady state on (80) and using the fact that \(\tau ^{*}=\frac{\sigma -1}{\sigma } Nm^{*}\), simple algebra yields:

$$\begin{aligned} Nm^{*}=\frac{1}{1-\pi }\frac{K^{*}}{\left[ \frac{1}{\pi }+\left( 1-\lambda \right) \left( \sigma -1\right) \right] \left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] ^{\frac{1}{\theta }}I^{*\frac{ 1-\theta }{\theta }}-\frac{\left( 1-\lambda \right) \left( \sigma -1\right) }{I^{*}}} \end{aligned}$$
(81)

Finally, from the balance sheet condition in the steady state we have: \( \frac{1}{N}\left( w\left( k_{t+1}^{*};N\right) +\lambda \tau ^{*}\right) =m^{*}+k^{*}\). From (81):

$$\begin{aligned} m^{*}=\frac{\frac{1}{N}\left( w\left( k_{t+1}^{*};N\right) +\lambda \tau ^{*}\right) }{1+\left( 1-\pi \right) \left[ \frac{1}{\pi }+\left( 1-\lambda \right) \left( \sigma -1\right) \right] \left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] ^{\frac{1}{\theta }}I^{*\frac{ 1-\theta }{\theta }}-\frac{\left( 1-\pi \right) \left( 1-\lambda \right) \left( \sigma -1\right) }{I^{*}}} \end{aligned}$$

which is identical to that in (37) when the self-selection constraint does not bind.

Next, using (34), (81), and the expression for transfers:

$$\begin{aligned} \frac{K^{*}}{w\left( k^{*};N\right) }=\frac{1}{1+\left[ 1-\lambda \frac{\sigma -1}{\sigma }\right] \frac{1}{\left( 1-\pi \right) \left[ \frac{1 }{\pi }+\left( 1-\lambda \right) \left( \sigma -1\right) \right] \left[ 1- \frac{\left( 1-\rho -\alpha \right) }{N}\right] ^{\frac{1}{\theta }}I^{*\frac{1-\theta }{\theta }}-\frac{\left( 1-\pi \right) \left( 1-\lambda \right) \left( \sigma -1\right) }{I^{*}}}} \end{aligned}$$

where \(\frac{K^{*}}{w\left( k^{*};N\right) }=\frac{K^{*1-\alpha -\rho }}{\left( 1-\alpha \right) A}\). Furthermore, from (35) and (36), the relative return to depositors is such that:

$$\begin{aligned} \frac{r_{t}^{n^{*}}}{r_{t}^{m^{*}}}=\frac{\frac{N}{1-\pi }r\left( k_{t+1}^{*};N\right) k_{t+1}^{*}}{\frac{N}{\pi }m_{t}^{*}\frac{ P_{t}}{P_{t+1}}} \end{aligned}$$

Imposing steady state:

$$\begin{aligned} \frac{r^{n^{*}}}{r^{m^{*}}}=\frac{I^{*}K^{*}}{\frac{1-\pi }{ \pi }Nm^{*}} \end{aligned}$$

As a final step, we substitute for \(Nm^{*}\) from (81):

$$\begin{aligned} \frac{r^{n^{*}}}{r^{m^{*}}}=\left[ 1+\pi \left( 1-\lambda \right) \left( \sigma -1\right) \right] \left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] ^{\frac{1}{\theta }}I^{*\frac{1}{\theta }}-\pi \left( 1-\lambda \right) \left( \sigma -1\right) \end{aligned}$$

which is the same expression obtained in (38). Simple examination of (38) indicates that \(\frac{ r^{n^{*}}}{r^{m^{*}}}>1\) if \(I^{*}>\left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] ^{-1}=\underline{I}\).

We proceed to find the expression for the expected utility of depositors when the incentive compatibility constraint is non-binding, \(U^{*}\). It is easy to verify that (33) in the steady state can be written as:

$$\begin{aligned} U^{*}=\frac{\pi +\left( 1-\pi \right) \left[ \frac{c^{n^{*}}}{ c^{m^{*}}}\right] ^{1-\theta }}{1-\theta }\left[ c^{m^{*}}\right] ^{1-\theta } \end{aligned}$$
(82)

Substituting for \(\frac{c^{n^{*}}}{c^{m^{*}}}\) from (39):

$$\begin{aligned} U^{*}=\frac{\pi +\left( 1-\pi \right) \left[ \left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] I^{*}\right] ^{\frac{1-\theta }{ \theta }}}{1-\theta }\left[ c^{m^{*}}\right] ^{1-\theta } \end{aligned}$$
(83)

where \(c^{m^{*}}=\frac{N}{\pi }m^{*}\frac{1}{\sigma }+\left( 1-\lambda \right) \tau \). Upon using the definition for \(\tau \),

$$\begin{aligned} c^{m^{*}}=\left( \frac{1}{\pi }+\left( 1-\lambda \right) \left( \sigma -1\right) \right) \frac{Nm^{*}}{\sigma } \end{aligned}$$

As a final step, using (81), \(c^{m^{*}}\) is such that:

$$\begin{aligned} c^{m^{*}}=\frac{\left( \frac{1}{\pi }+\left( 1-\lambda \right) \left( \sigma -1\right) \right) K^{*}}{\left( 1-\pi \right) \left[ \frac{1}{\pi }+\left( 1-\lambda \right) \left( \sigma -1\right) \right] \left[ 1-\frac{ \left( 1-\rho -\alpha \right) }{N}\right] ^{\frac{1}{\theta }}I^{*\frac{ 1-\theta }{\theta }}-\frac{\left( 1-\pi \right) \left( 1-\lambda \right) \left( \sigma -1\right) }{I^{*}}}\frac{1}{\sigma } \end{aligned}$$
(84)

Direct substitution of (84) into (83) yields (43) in the text.

Now suppose the incentive compatibility constraint binds above the Friedman rule level. That is, \(1<I^{*}\le \underline{I}\). From (35) and (36), in the steady state, the relative return to depositors is such that:

$$\begin{aligned} \frac{r^{n^{*}}}{r^{m^{*}}}=\frac{I^{*}K^{*}}{\frac{1-\pi }{ \pi }Nm^{*}}=1 \end{aligned}$$

which implies that: \(K^{*}=\frac{1-\pi }{\pi }\frac{1}{I^{*}} Nm^{*}\). Using bank’s balance sheet condition, (34):

$$\begin{aligned} K^{*}=\left( w\left( k^{*};N\right) +\lambda \tau ^{*}\right) -Nm^{*}=\frac{1-\pi }{\pi }\frac{1}{I^{*}}Nm^{*} \end{aligned}$$

Simple algebra implies that:

$$\begin{aligned} m^{_{*}}=\frac{\frac{1}{N}\left( w\left( k^{*};N\right) +\lambda \tau ^{*}\right) }{\left( 1+\frac{1-\pi }{\pi }\frac{1}{I^{*}} \right) } \end{aligned}$$

which is the expression obtained in (37).

Using the expression for transfers in the equation for money balances:

$$\begin{aligned} Nm^{*}=\frac{w\left( k^{*};N\right) }{1+\frac{1-\pi }{\pi }\frac{1}{ I^{*}}-\lambda \frac{\sigma -1}{\sigma }} \end{aligned}$$
(85)

Finally, from (2) and (34) we have:

$$\begin{aligned} Nm^{*}=\frac{w\left( k^{*};N\right) -K^{*}}{1-\lambda \frac{ \sigma -1}{\sigma }} \end{aligned}$$
(86)

From (85) and (86), we obtain:

$$\begin{aligned} \frac{K^{*}}{w\left( k^{*};N\right) }=\frac{\frac{1-\pi }{\pi }\frac{ 1}{I^{*}}}{1+\frac{1-\pi }{\pi }\frac{1}{I^{*}}-\lambda \frac{\sigma -1}{\sigma }} \end{aligned}$$
(87)

which is identical to (40) in the text (after some simplification).

Plugging the definitions of \(w\left( k^{*};N\right) \) and \(I^{*}\), where \(I^{*}=\frac{\sigma \alpha A}{K^{*1-\alpha -\rho }}\) into (87), it is easy to verify that:

$$\begin{aligned} K^{*1-\alpha -\rho }=\left( 1-\alpha \right) A-\frac{\pi \alpha A}{1-\pi }\left[ \sigma \left( 1-\lambda \right) +\lambda \right] \end{aligned}$$

and

$$\begin{aligned} I^{*}=\frac{\sigma }{\frac{1-\alpha }{\alpha }-\frac{\pi }{1-\pi }\left[ \sigma \left( 1-\lambda \right) +\lambda \right] } \end{aligned}$$

which are, respectively, Eqs. (41) and (42) in the text. From the expression for I, it can be established that \(I^{*}>1\) if \( \sigma >\frac{\frac{1-\alpha }{\alpha }-\lambda \frac{\pi }{1-\pi }}{1+\frac{ \pi }{1-\pi }\left( 1-\lambda \right) }=\underline{\sigma }_{1}^{\prime }\).

In addition, \(I^{*}\ge \underline{I}\) if

$$\begin{aligned} \frac{\sigma }{\frac{1-\alpha }{\alpha }-\frac{\pi }{1-\pi }\left[ \sigma \left( 1-\lambda \right) +\lambda \right] }\ge \frac{1}{\left[ 1-\frac{ \left( 1-\rho -\alpha \right) }{N}\right] } \end{aligned}$$

which can be written as:

$$\begin{aligned} \sigma \ge \frac{\frac{1-\pi }{\pi }\frac{1-\alpha }{\alpha }-\lambda }{ 1-\lambda +\frac{1-\pi }{\pi }\left[ 1-\frac{\left( 1-\alpha -\rho \right) }{ N}\right] }=\underline{\sigma }_{2}^{\prime } \end{aligned}$$

In this manner, \(I^{*}>\underline{I}\) and \(\frac{r^{n^{*}}}{ r^{m^{*}}}>1\) if \(\sigma >\underline{\sigma }_{2}^{\prime }\). Moreover, \( I^{*}\in \left[ 1,\underline{I}\right] \) and \(\frac{r^{n^{*}}}{ r^{m^{*}}}=1\) if \(\sigma \in \left[ \underline{\sigma }_{1}^{\prime }, \underline{\sigma }_{2}^{\prime } \right] \). Finally, \(I^{*}=1\) for all \( \sigma \le \underline{\sigma }_{1}^{\prime }\).

We proceed to derive an expression for the welfare of depositors, (43). As agents receive complete risk-sharing, \( r^{n^{*}}=r^{m^{*}}\) and the same amount of transfers when old, it directly follows that \(c^{m^{*}}=c^{n^{*}}=c^{*}\). Substituting this information into (82):

$$\begin{aligned} U^{*}=\frac{1}{1-\theta }\left[ c^{m^{*}}\right] ^{1-\theta } \end{aligned}$$

where from the work above:

$$\begin{aligned} c^{m^{*}}=\left( \frac{1}{\pi }+\left( 1-\lambda \right) \left( \sigma -1\right) \right) \frac{Nm^{*}}{\sigma } \end{aligned}$$

and \(m^{*}\) is given by (85). Using (3), (41), and (42) in (85):

$$\begin{aligned} \frac{Nm^{*}}{\sigma }=\frac{\pi \alpha A}{1-\pi }\left[ \left( 1-\alpha \right) A-\frac{\pi \alpha A}{1-\pi }\left[ \sigma \left( 1-\lambda \right) +\lambda \right] \right] ^{\frac{\alpha +\rho }{1-\alpha -\rho }} \end{aligned}$$

Upon substituting into \(c^{m^{*}}\) and \(U^{*}\), we get (43) in the text.

Now suppose \(\sigma \le \underline{\sigma }_{1}^{\prime }\), where \(I^{*}=1\). Using the definition of \(I^{*}\), in the steady state we have: \( K^{*}=\left( \alpha A\sigma \right) ^{\frac{1}{1-\alpha -\rho }}\). As under the benchmark model, the constraints on payments to movers and non-movers are such that:

$$\begin{aligned} \pi \frac{1}{N}r_{t}^{m}\left( w_{t}+\lambda \tau _{t}\right) =\delta _{t}m_{t}\frac{P_{t}}{P_{t+1}} \end{aligned}$$
(88)

and

$$\begin{aligned} \frac{1-\pi }{N}r_{t}^{n}\left( w_{t}+\lambda \tau _{t}\right) =r\left( k_{t+1},K_{t+1}^{N-1}\right) k_{t+1}+\left( 1-\delta _{t}\right) m_{t}\frac{ P_{t}}{P_{t+1}} \end{aligned}$$
(89)

Imposing steady state and symmetry on (88) and (89), complete risk-sharing implies that:

$$\begin{aligned} \delta ^{*}=\pi \left( \frac{K^{*}}{Nm^{*}}+1\right) \end{aligned}$$

Substituting (86) into the expression for \(\delta ^{*}\), it is easily verified that:

$$\begin{aligned} \delta ^{*}=\pi \left( \frac{1-\lambda \frac{\sigma -1}{\sigma }\frac{ K^{*}}{w\left( k^{*};N\right) }}{1-\frac{K^{*}}{w\left( k^{*};N\right) }}\right) \end{aligned}$$
(90)

where \(\delta ^{*}<1\) if:

$$\begin{aligned} \pi \left( \frac{1-\lambda \frac{\sigma -1}{\sigma }\frac{K^{*}}{w\left( k^{*};N\right) }}{1-\frac{K^{*}}{w\left( k^{*};N\right) }} \right) <1 \end{aligned}$$

where from the work above, at the Friedman rule we have:\(\frac{K^{*}}{ w\left( k^{*};N\right) }=\frac{K^{*1-\alpha -\rho }}{\left( 1-\alpha \right) A}=\frac{\alpha }{\left( 1-\alpha \right) r}=\frac{\alpha \sigma }{ \left( 1-\alpha \right) I}=\frac{\alpha \sigma }{\left( 1-\alpha \right) }\). Using this information, it is easy to verify that \(\delta ^{*}<1\) if: \( \sigma <\frac{\frac{1-\alpha }{\alpha }-\lambda \frac{\pi }{1-\pi }}{1+\frac{ \pi }{1-\pi }\left( 1-\lambda \right) }=\underline{\sigma }_{1}^{\prime }\).

Next, from (86) and (90) we have:

$$\begin{aligned} \delta ^{*}Nm^{*}=\pi \left( \frac{1-\lambda \frac{\sigma -1}{\sigma }\frac{K^{*}}{w\left( k^{*};N\right) }}{\left( 1-\lambda \frac{ \sigma -1}{\sigma }\right) }\right) w\left( k^{*};N\right) \end{aligned}$$
(91)

Using the definitions of \(I^{*}\) and \(w\left( k^{*};N\right) \), along with the expression for \(K^{*}=\left( \alpha A\sigma \right) ^{ \frac{1}{1-\alpha -\rho }}\) into (91) to get:

$$\begin{aligned} \delta ^{*}Nm^{*}=\pi \left( \frac{1-\lambda \frac{\sigma -1}{\sigma }\frac{\alpha \sigma }{\left( 1-\alpha \right) }}{\left( 1-\lambda \frac{ \sigma -1}{\sigma }\right) }\right) \left( 1-\alpha \right) A\left( \alpha A\sigma \right) ^{\frac{\alpha +\rho }{1-\alpha -\rho }} \end{aligned}$$
(92)

In order to derive an expression for the welfare of depositors, we solve for the consumption of a typical depositor which is expressed as:

$$\begin{aligned} c^{*}=r^{m}\left( w\left( k^{*};N\right) +\lambda \tau ^{*}\right) +\left( 1-\lambda \right) \frac{\sigma -1}{\sigma }Nm^{*} \end{aligned}$$

where

$$\begin{aligned} r^{m^{*}}\left( w\left( k^{*};N\right) +\lambda \tau ^{*}\right)= & {} \frac{\delta ^{*}Nm^{*}}{\pi }\frac{1}{\sigma } \\= & {} \left( \frac{ 1-\lambda \frac{\sigma -1}{\sigma }\frac{\alpha \sigma }{\left( 1-\alpha \right) }}{\left( 1-\lambda \frac{\sigma -1}{\sigma }\right) }\right) \left( 1-\alpha \right) A\left( \alpha A\sigma \right) ^{\frac{\alpha +\rho }{ 1-\alpha -\rho }}\frac{1}{\sigma } \end{aligned}$$

and from (86):

$$\begin{aligned} Nm^{*}=\frac{w\left( k^{*};N\right) -K^{*}}{\left( 1-\lambda \frac{\sigma -1}{\sigma }\right) } \end{aligned}$$

Using this information,

$$\begin{aligned} \begin{aligned} c^{*}&=\left( 1-\alpha \right) A\left( \alpha A\right) ^{\frac{\alpha +\rho }{1-\alpha -\rho }} \\&\quad \left[ \left( 1-\lambda \left( \sigma -1\right) \frac{\alpha }{\left( 1-\alpha \right) }\right) \frac{1}{\sigma }+\left( 1-\lambda \right) \frac{\left( \sigma -1\right) }{\sigma }\left( 1-\frac{ \alpha \sigma }{\left( 1-\alpha \right) }\right) \right] \\&\quad \frac{\sigma ^{ \frac{\alpha +\rho }{1-\alpha -\rho }}}{\left( 1-\lambda \frac{\sigma -1}{ \sigma }\right) } \end{aligned} \end{aligned}$$

which yields (43) when substituting into \(U^{*}=\frac{1}{1-\theta }\left[ c^{m^{*}}\right] ^{1-\theta }\). This completes the derivation.

10. Proof of Proposition 8. From our derivations above, it is clear that a steady-state equilibrium where both money and capital are held exists when \(\sigma \in \left( 0,\underline{\sigma }_{2}^{\prime }\right] \). We proceed to show that a unique solution exists if \(\sigma >\underline{\sigma }_{2}^{\prime }\). That is, we proceed to show that (27) and (40) intersect once at \(I^{*}>\underline{I}\). We begin by rewriting the expression for the supply of capital over that range of \(I^{*}\) as:

$$\begin{aligned} \Omega \left( K^{*}\right) =\frac{1}{1+\left[ 1-\lambda \frac{\sigma -1}{ \sigma }\right] \frac{1}{\left( 1-\pi \right) \left[ \frac{1}{\pi }+\left( 1-\lambda \right) \left( \sigma -1\right) \right] \left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] ^{\frac{1}{\theta }}I^{*\frac{ 1-\theta }{\theta }}-\frac{\left( 1-\pi \right) \left( 1-\lambda \right) \left( \sigma -1\right) }{I^{*}}}} \end{aligned}$$
(93)

where \(\Omega \left( K^{*}\right) =\frac{K^{*}}{w\left( k^{*};N\right) }=\frac{K^{*1-\alpha -\rho }}{\left( 1-\alpha \right) A}\). In addition, recalling that : \(I^{*}=\sigma \alpha AK^{*\rho +\alpha -1} \) from (27), \(\Omega \left( K^{*}\right) \) can be rewritten as:

$$\begin{aligned} \Omega \left( K^{*}\right) =\sigma \frac{\alpha }{\left( 1-\alpha \right) }\frac{1}{I^{*}} \end{aligned}$$
(94)

which behaves as described in the text.

Using (27) and (40), the following polynomial yields the solution for \(I^{*}\)

$$\begin{aligned} \begin{aligned}&\frac{1}{1+\left[ 1-\lambda \frac{\sigma -1}{\sigma }\right] \frac{1}{\left( 1-\pi \right) \left[ \frac{1}{\pi }+\left( 1-\lambda \right) \left( \sigma -1\right) \right] \left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] ^{ \frac{1}{\theta }}I^{*\frac{1-\theta }{\theta }}-\frac{\left( 1-\pi \right) \left( 1-\lambda \right) \left( \sigma -1\right) }{I^{*}}}} \\&\quad =\sigma \frac{\alpha }{\left( 1-\alpha \right) }\frac{1}{I^{*}} \end{aligned} \end{aligned}$$

which can be rewritten as:

$$\begin{aligned} \begin{aligned} \zeta \left( I^{*}\right)&=\frac{\alpha }{\left( 1-\alpha \right) }\frac{ 1}{I^{*}} \\&\quad \left[ \sigma +\frac{1}{\left( \frac{1}{\left[ \sigma \left( 1-\lambda \right) +\lambda \right] }\frac{1}{\pi }+\frac{\left( 1-\lambda \right) \left( \sigma -1\right) }{\left[ \sigma \left( 1-\lambda \right) +\lambda \right] }\right) \left( 1-\pi \right) \left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] ^{\frac{1}{\theta }}I^{*\frac{1-\theta }{ \theta }}-\frac{\left( 1-\pi \right) \left( 1-\lambda \right) \left( \sigma -1\right) }{I^{*}\left[ \sigma \left( 1-\lambda \right) +\lambda \right] }}\right] \\&=1 \end{aligned} \end{aligned}$$
(95)

It is trivial to show that \(\zeta ^{\prime }\left( I^{*}\right) <0\) and \(\lim \limits _{I^{*}\rightarrow \infty } \zeta \rightarrow 0\). In this manner, a unique solution exists if \(\zeta \left( \underline{I}\right) \ge 1 \). Upon using the definition of \(\underline{I}\) and some algebra, \(\zeta \left( \underline{I}\right) \ge 1\) if \(\sigma \ge \frac{\frac{1-\pi }{\pi } \frac{1-\alpha }{\alpha }-\lambda }{1-\lambda +\frac{1-\pi }{\pi }\left[ 1- \frac{\left( 1-\alpha -\rho \right) }{N}\right] }=\underline{\sigma } _{2}^{\prime }\). From the solution to the problem above, a unique steady-state equilibrium where both money and capital are held exists for all \(\sigma >0\). This completes the proof of Proposition 8.

11. Proof of Proposition 9. To begin, suppose \(\sigma \in \left( 0, \underline{\sigma }_{1}^{\prime }\right] \), where \(\frac{c^{n^{*}}}{ c^{m^{*}}}=1\) and \(I^{*}=1\). Over this range of money growth, \( K^{*}=\left( \alpha A\sigma \right) ^{\frac{1}{1-\alpha -\rho }}\), which is independent of \(\lambda \). Since \(I^{*}=\sigma \alpha AK^{*\rho +\alpha -1}\), then we also have \(\frac{\mathrm{d}I^{*}}{\mathrm{d}\lambda }=0\). Clearly, \( \frac{\mathrm{d}\frac{c^{n^{*}}}{c^{m^{*}}}}{\mathrm{d}\lambda }=0\). Now, suppose \( \sigma \in \left( \underline{\sigma }_{1}^{\prime },\underline{\sigma } _{2}^{\prime }\right] \), where \(\frac{c^{n^{*}}}{c^{m^{*}}}=1\) and \( I^{*}>1\). From the work above, the capital is stock is given by (41) which can be rewritten as:

$$\begin{aligned} K^{*1-\alpha -\rho }=\left( 1-\alpha \right) A-\frac{\pi \alpha A}{1-\pi }\left[ \sigma -\lambda \left( \sigma -1\right) \right] \end{aligned}$$

It is clear that \(\frac{\mathrm{d}K^{*}}{\mathrm{d}\lambda }\ge \left( <\right) 0\) if \( \sigma \ge \left( <\right) 1\). The impact of a change in \(\lambda \) on \( I^{*}\) directly follows. Moreover, \(\frac{\mathrm{d}\frac{c^{n^{*}}}{ c^{m^{*}}}}{\mathrm{d}\lambda }=0\) as \(\frac{c^{n^{*}}}{c^{m^{*}}}=1\) over this range of \(\sigma \).

Now suppose \(\sigma >\underline{\sigma }_{2}^{\prime }\). The equilibrium values of \(K^{*}\) and \(I^{*}\) are obtained from system (27) and (40). First, capital demand function, (27), is as described in the text. In particular, \(\frac{\mathrm{d}I^{*}}{\mathrm{d}K^{*}}<0\) and \(\lim \limits _{I\rightarrow \infty } K\rightarrow 0\). On the supply side, as \(\theta <1\), it is clear that (93) is such that: \(\lim \limits _{I^{*}\rightarrow \infty }\)\(K^{*}\rightarrow \Omega ^{-1}\left( 1\right) \) and since \( \Omega ^{\prime }\left( K^{*}\right) >0\), \(\frac{\mathrm{d}I^{*}}{\mathrm{d}K^{*}}>0\) as long as \(\sigma \ge 1\). We proceed to find a sufficient condition on \(\sigma :\frac{\mathrm{d}I^{*}}{\mathrm{d}K^{*}}>0\) for \(\sigma <1\).

Define \(\Delta \):

$$\begin{aligned} \Delta \left( I^{*}\right) =\frac{\left[ 1-\lambda \frac{\sigma -1}{ \sigma }\right] }{\left( 1-\pi \right) \left[ \frac{1}{\pi }+\left( 1-\lambda \right) \left( \sigma -1\right) \right] \left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] ^{\frac{1}{\theta }}I^{*\frac{ 1-\theta }{\theta }}-\frac{\left( 1-\pi \right) \left( 1-\lambda \right) \left( \sigma -1\right) }{I^{*}}} \end{aligned}$$

where \(\left[ 1-\lambda \frac{\sigma -1}{\sigma }\right] >0\) for all \(\sigma >0\) and \(\lambda \in \left[ 0,1\right] \). Capital supply function, (93), can be written as:

$$\begin{aligned} \Omega \left( K^{*}\right) =\frac{1}{1+\Delta \left( I^{*}\right) } \end{aligned}$$

Clearly, \(\frac{\mathrm{d}I^{*}}{\mathrm{d}K^{*}}>0\) if \(\Delta ^{\prime }\left( I^{*}\right) <0\).

$$\begin{aligned} \begin{aligned}&\frac{1}{\left[ 1-\lambda \frac{\sigma -1}{\sigma }\right] }\Delta ^{\prime }\left( I^{*}\right) \\&\quad =-\frac{\frac{1-\theta }{\theta }\left( 1-\pi \right) \left[ \frac{1}{\pi }+\left( 1-\lambda \right) \left( \sigma -1\right) \right] \left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] ^{ \frac{1}{\theta }}I^{*\frac{1-\theta }{\theta }-1}+\frac{\left( 1-\pi \right) \left( 1-\lambda \right) \left( \sigma -1\right) }{I^{*2}}}{ \left[ \left( 1-\pi \right) \left[ \frac{1}{\pi }+\left( 1-\lambda \right) \left( \sigma -1\right) \right] \left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] ^{\frac{1}{\theta }}I^{*\frac{1-\theta }{\theta }}-\frac{ \left( 1-\pi \right) \left( 1-\lambda \right) \left( \sigma -1\right) }{ I^{*}}\right] ^{2}} \end{aligned} \end{aligned}$$

In this manner, \(\Delta ^{\prime }\left( I^{*}\right) <0\) if the term in the numerator is positive. With some algebra, \(\Delta ^{\prime }\left( I^{*}\right) <0\) if:

$$\begin{aligned} \frac{1-\theta }{\theta }\left[ \frac{1}{\pi }+\left( 1-\lambda \right) \left( \sigma -1\right) \right] \left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] ^{\frac{1}{\theta }}I^{*\frac{1}{\theta }}+\left( 1-\lambda \right) \left( \sigma -1\right) >0 \end{aligned}$$

which always holds if \(\sigma \ge 1\) since \(N>1\). Now suppose \(\sigma <1\), rewriting the inequality as:

$$\begin{aligned} \left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] ^{\frac{1}{\theta } }I^{*\frac{1}{\theta }}>\frac{\left( 1-\lambda \right) \left( 1-\sigma \right) }{\left( \frac{1}{\pi }-\left( 1-\lambda \right) \left( 1-\sigma \right) \right) }\frac{\theta }{1-\theta } \end{aligned}$$

Since \(\left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] ^{\frac{1}{ \theta }}I^{*\frac{1}{\theta }}>1\) when the incentive compatibility constraint is non-binding, it is sufficient to find a condition such that: \( \frac{\left( 1-\lambda \right) \left( 1-\sigma \right) }{\left( \frac{1}{\pi }-\left( 1-\lambda \right) \left( 1-\sigma \right) \right) }\frac{\theta }{ 1-\theta }<1\)\(\Longleftrightarrow \sigma >1-\frac{\left( 1-\theta \right) }{ \left( 1-\lambda \right) }\frac{1}{\pi }=\underline{\sigma }_{0}^{\prime }\). Under this condition, \(\Delta ^{\prime }\left( I^{*}\right) <0\) and (93): \(\frac{\mathrm{d}I^{*}}{\mathrm{d}K^{*}}>0\). Notice that \( \underline{\sigma }_{2}^{\prime }>\underline{\sigma }_{0}^{\prime }\) if:

$$\begin{aligned} \frac{\frac{1-\pi }{\pi }\frac{1-\alpha }{\alpha }-\lambda }{1-\lambda + \frac{1-\pi }{\pi }\left[ 1-\frac{\left( 1-\alpha -\rho \right) }{N}\right] } >1-\frac{\left( 1-\theta \right) }{\left( 1-\lambda \right) }\frac{1}{\pi } \end{aligned}$$

which can be written as:

$$\begin{aligned} \theta <1-\pi \left( 1-\lambda \right) \left( \frac{1+\frac{1-\pi }{\pi } \left[ 1-\frac{\left( 1-\alpha -\rho \right) }{N}\right] -\frac{1-\pi }{\pi } \frac{1-\alpha }{\alpha }}{1-\lambda +\frac{1-\pi }{\pi }\left[ 1-\frac{ \left( 1-\alpha -\rho \right) }{N}\right] }\right) =\tilde{\theta }_{1} \end{aligned}$$

Now suppose \(\sigma >\max \left( \underline{\sigma }_{0}^{\prime }, \underline{\sigma }_{2}^{\prime }\right) \), over which the capital supply function is upward sloping. The supply of capital is given by (93):

$$\begin{aligned} \Omega \left( K^{*}\right) =\frac{1}{1+\Delta \left( I^{*},\lambda \right) } \end{aligned}$$

where \(\Delta \left( I^{*},\lambda \right) \) is defined above and can be rewritten as:

$$\begin{aligned} \begin{aligned}&\Delta \left( I^{*},\lambda \right) \\&\quad =\frac{\left[ 1-\lambda \frac{\sigma -1}{\sigma }\right] }{\frac{\left( 1-\pi \right) }{\pi }\left[ 1-\frac{ \left( 1-\rho -\alpha \right) }{N}\right] ^{\frac{1}{\theta }}I^{*\frac{ 1-\theta }{\theta }}+\left( \left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N} \right] ^{\frac{1}{\theta }}I^{*\frac{1}{\theta }}-1\right) \frac{\left( 1-\pi \right) \left( 1-\lambda \right) \left( \sigma -1\right) }{I^{*}}} \end{aligned} \end{aligned}$$

For a given \(I^{*}\),

$$\begin{aligned} \frac{\partial \Delta }{\partial \lambda }=\frac{ \begin{array}{c} -\frac{\sigma -1}{\sigma }\left\{ \frac{\left( 1-\pi \right) }{\pi }\left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] ^{\frac{1}{\theta } }I^{*\frac{1-\theta }{\theta }}+\frac{\left( 1-\pi \right) \left( 1-\lambda \right) \left( \sigma -1\right) }{I^{*}}\left( \left[ 1-\frac{ \left( 1-\rho -\alpha \right) }{N}\right] ^{\frac{1}{\theta }}I^{*\frac{1 }{\theta }}-1\right) \right\} + \\ \frac{\left( 1-\pi \right) \left( \sigma -1\right) }{I^{*}}\left( \left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] ^{\frac{1}{\theta } }I^{*\frac{1}{\theta }}-1\right) \left[ 1-\lambda \frac{\sigma -1}{ \sigma }\right] \end{array} }{\left[ \frac{\left( 1-\pi \right) }{\pi }\left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] ^{\frac{1}{\theta }}I^{*\frac{1-\theta }{ \theta }}+\frac{\left( 1-\pi \right) \left( 1-\lambda \right) \left( \sigma -1\right) }{I^{*}}\left( \left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N }\right] ^{\frac{1}{\theta }}I^{*\frac{1}{\theta }}-1\right) \right] ^{2} } \end{aligned}$$

In an (IK) plane, capital supply locus, (93), shifts to the right for a given I if \(\frac{\partial \Delta }{\partial \lambda }<0\). Given that the capital supply function is upward sloping, the equilibrium capital stock is higher if \(\frac{\partial \Delta }{\partial \lambda }<0\). Suppose \(\sigma >1\). With a few lines of algebra, \(\frac{ \partial \Delta }{\partial \lambda }<0\) if:

$$\begin{aligned} 0<\frac{1-\pi }{\pi }\left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] ^{\frac{1}{\theta }}I^{*\frac{1-\theta }{\theta }}+1 \end{aligned}$$

which always holds. Now, suppose \(\sigma <1\). It is easy to verify that \( \frac{\partial \Delta }{\partial \lambda }<0\) if \(0>\frac{1-\pi }{\pi }\left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] ^{\frac{1}{\theta } }I^{*\frac{1}{\theta }}+1\), which never holds. Therefore, \(\frac{ \partial \Delta }{\partial \lambda }>0\) if \(\sigma <1\). The result in the Proposition directly follows. This completes the proof of Proposition 9.

12. Proof of Proposition 10. The effect of monetary policy on capital formation when the incentive compatibility constraint is binding is easily observed from the explicit solutions for \(K^{*}\) and \(I^{*}\). We proceed to show that \(\frac{\mathrm{d}K^{*}}{\mathrm{d}\sigma }>0\) if \(\sigma \ge \max \left( \underline{\sigma }_{0}^{\prime },\underline{\sigma }_{2}^{\prime }\right) \).

To begin, it is clear that the demand for capital is higher under higher values of \(\sigma \). Therefore, in an I, K plane, locus (27) shifts to the right. On the supply side, from (93), it is trivial to show that \(\frac{\partial \Delta }{\partial \sigma }<0\) for a given \(I^{*}\). Therefore, (93) locus shifts to the right. In this manner, unambiguously, \(\frac{ \mathrm{d}K^{*}}{\mathrm{d}\sigma }>0\). The impact of \(\sigma \) on \(I^{*}\) is less straightforward. We proceed to show that \(\frac{\mathrm{d}I^{*}}{\mathrm{d}\sigma }>0\).

Recall from our characterization of the polynomial yielding the solution for \(I^{*}\), (95)

$$\begin{aligned} \begin{aligned} \zeta \left( I^{*}\right)&=\frac{\alpha }{\left( 1-\alpha \right) }\frac{ 1}{I^{*}}\\&\quad \left[ \sigma +\frac{1}{\left( \frac{1}{\left[ \sigma \left( 1-\lambda \right) +\lambda \right] }\frac{1}{\pi }+\frac{\left( 1-\lambda \right) \left( \sigma -1\right) }{\left[ \sigma \left( 1-\lambda \right) +\lambda \right] }\right) \left( 1-\pi \right) \left[ 1-\frac{\left( 1-\rho -\alpha \right) }{N}\right] ^{\frac{1}{\theta }}I^{*\frac{1-\theta }{ \theta }}-\frac{\left( 1-\pi \right) \left( 1-\lambda \right) \left( \sigma -1\right) }{I^{*}\left[ \sigma \left( 1-\lambda \right) +\lambda \right] }}\right] \\&=1 \end{aligned} \end{aligned}$$
(96)

We have \(\zeta ^{\prime }\left( I^{*}\right) <0\). In this manner, \(\frac{ \mathrm{d}I^{*}}{\mathrm{d}\sigma }>0\) if \(\frac{\partial \zeta }{\partial \sigma }>0\). Define \(Z_{1}=\frac{1}{\left[ \sigma \left( 1-\lambda \right) +\lambda \right] }\frac{1}{\pi }+\frac{\left( 1-\lambda \right) \left( \sigma -1\right) }{\left[ \sigma \left( 1-\lambda \right) +\lambda \right] }\) and \( Z_{2}=\frac{\left( 1-\pi \right) \left( 1-\lambda \right) \left( \sigma -1\right) }{I^{*}\left[ \sigma \left( 1-\lambda \right) +\lambda \right] }\), where

$$\begin{aligned} \frac{\partial Z_{1}}{\partial \sigma }=-\frac{\left( 1-\lambda \right) }{ \left[ \sigma \left( 1-\lambda \right) +\lambda \right] ^{2}}\frac{1-\pi }{ \pi } \end{aligned}$$

and

$$\begin{aligned} \frac{\partial Z_{2}}{\partial \sigma }=\frac{\left( 1-\pi \right) \left( 1-\lambda \right) }{I^{*}}\frac{1}{\left[ \sigma \left( 1-\lambda \right) +\lambda \right] ^{2}} \end{aligned}$$

Obviously, \(\frac{\partial Z_{1}}{\partial \sigma }<0\) if \(\lambda \in [0,1)\). Similarly, \(\frac{\partial Z_{2}}{\partial \sigma }>0\). This clearly shows that \(\frac{\partial \zeta }{\partial \sigma }>0\) and \(\frac{ \mathrm{d}I^{*}}{\mathrm{d}\sigma }>0\) if \(\lambda \in [0,1)\). It is also obvious that \(\frac{\mathrm{d}I^{*}}{\mathrm{d}\sigma }>0\) if \(\lambda =1\) by visual inspection of Eq. (96). This completes the proof of Proposition 10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghossoub, E.A., Reed, R.R. Banking competition, production externalities, and the effects of monetary policy. Econ Theory 67, 91–154 (2019). https://doi.org/10.1007/s00199-017-1086-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00199-017-1086-4

Keywords

JEL Classification

Navigation