Skip to main content
Log in

Hybridized SLAU2–HLLI and hybridized AUSMPW\(+\)–HLLI Riemann solvers for accurate, robust, and efficient magnetohydrodynamics (MHD) simulations, part I: one-dimensional MHD

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

SLAU2 and AUSMPW\(+\), both categorized as AUSM-type Riemann solvers, have been extensively developed in gasdynamics. They are based on a splitting of the numerical flux into advected and pressure parts. In this paper, these two Riemann solvers have been extended to magnetohydrodynamics (MHD). The SLAU2 Riemann solver has the favorable attribute that its dissipation for low-speed flows scales as \(O(M^{2})\), where M is the Mach number. This is the physical scaling required for low-speed flows, and the dissipation in SLAU2 for MHD is engineered to have this low Mach number scaling. The AUSMPW\(+\), when its pressure flux is replaced with that of SLAU2, has the same low Mach number scaling. At higher Mach numbers, however, the pressure-split Riemann solvers were found not to function well for some MHD Riemann problems, despite the fact that they were engineered to have a dissipation that scales as \(O(\vert M\vert )\) for high Mach number flows. The HLLI Riemann solver (Dumbser and Balsara in J Comput Phys 304:275–319, 2016) has a dissipation that scales as \(O(\vert M\vert )\), which makes it unsuitable for low Mach number flows. However, it has very favorable performance for higher Mach number MHD flows. Since the two families of Riemann solvers perform very well over a range of intermediate Mach numbers, the best way to benefit from the mutually complementary strengths of both these Riemann solvers is to hybridize between them. The result is an all-speed Riemann solver for MHD. We, therefore, document hybridized SLAU2–HLLI and AUSMPW\(+\)–HLLI Riemann solvers. The hybrid Riemann solvers suppress the oscillations that appeared in single-solver solutions, and they also preserve contact discontinuities, as well as Alfvén waves, very well. Furthermore, their better resolution at low speeds has been demonstrated. We also present several stringent one-dimensional test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Remember that the pressure coefficient \(C_{p}\), being O(1), is written as \(C_{p} = 2\Delta p/(\gamma M^{2}p_{\infty })\), and hence, \(\Delta p\, \propto \, M^{2}\). See Appendix A of [55] for more details.

References

  1. Esquivel, A., Raga, A.C., Cantó, J., Rodríguez-González, A., López-Cámara, D., Velázquez, P.F., De Colle, F.: Model of Mira’s cometary head/tail entering the local bubble. Astrophys. J. 725, 1466–1475 (2010). https://doi.org/10.1088/0004-637X/725/2/1466

    Article  Google Scholar 

  2. Ohnishi, N., Kotake, K., Yamada, S.: Numerical analysis on standing accretion shock instability with neutrino heating in the supernova cores. Astrophys. J. 641(2), 1018–1028 (2006). https://doi.org/10.1086/500554

    Article  Google Scholar 

  3. Hanawa, T., Mikami, H., Matsumoto, T.: Improving shock irregularities based on the characteristics of the MHD equations. J. Comput. Phys. 227, 7952–7976 (2008). https://doi.org/10.1016/j.jcp.2008.05.006

    Article  MathSciNet  MATH  Google Scholar 

  4. Poggie, J., Gaitonde, D.V.: Magnetic control of flow past a blunt body: numerical validation and exploration. Phys. Fluids 14(5), 1720–1731 (2002). https://doi.org/10.1063/1.1465424

    Article  MATH  Google Scholar 

  5. Burr, U., Barleon, L., Müller, U., Tsinober, A.: Turbulent transport of momentum and heat in magnetohydrodynamic rectangular duct flow with strong sidewall jets. J. Fluid Mech. 406, 247–279 (2000). https://doi.org/10.1017/S0022112099007405

    Article  MATH  Google Scholar 

  6. Godunov, S.K.: A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb. Izd. Mosk. Mat. Obs. 47(3), 271–306 (1959)

    MATH  Google Scholar 

  7. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979). https://doi.org/10.1016/0021-9991(79)90145-1

    Article  MATH  Google Scholar 

  8. Colella, P.: A direct Eulerian MUSCL scheme for gas dynamics. SIAM J. Sci. Stat. Comput. 6(1), 104–117 (1985). https://doi.org/10.1137/0906009

    Article  MathSciNet  MATH  Google Scholar 

  9. Colella, P., Woodward, P.R.: The Piecewise Parabolic Method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174–201 (1984). https://doi.org/10.1016/0021-9991(84)90143-8

  10. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981). https://doi.org/10.1016/0021-9991(81)90128-5

    Article  MathSciNet  MATH  Google Scholar 

  11. Harten, A., Hyman, J.M.: Self adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50, 235–269 (1983). https://doi.org/10.1016/0021-9991(83)90066-9

    Article  MathSciNet  MATH  Google Scholar 

  12. Harten, A., Lax, P.D., Van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983). https://doi.org/10.1137/1025002

    Article  MathSciNet  MATH  Google Scholar 

  13. Einfeldt, B.: On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal. 25(2), 294–318 (1988). https://doi.org/10.1137/0725021

    Article  MathSciNet  MATH  Google Scholar 

  14. Einfeldt, B., Munz, C.D., Roe, P.L., Sjögreen, B.: On Godunov-type methods near low densities. J. Comput. Phys. 92, 273–295 (1991). https://doi.org/10.1016/0021-9991(91)90211-3

    Article  MathSciNet  MATH  Google Scholar 

  15. Rusanov, V.V.: Calculation of interaction of non-steady shock waves with obstacles. J. Comput. Math. Phys. USSR 1, 267–279 (1961)

    Google Scholar 

  16. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL Riemann solver. Shock Waves 4, 25–34 (1994). https://doi.org/10.1007/BF01414629

    Article  MATH  Google Scholar 

  17. Batten, P., Clarke, N., Lambert, C., Causon, D.M.: On the choice of wavespeeds for the HLLC Riemann solver. SIAM J. Sci. Comput. 18, 1553–1570 (1997). https://doi.org/10.1137/S1064827593260140

    Article  MathSciNet  MATH  Google Scholar 

  18. Osher, S., Solomon, F.: Upwind difference schemes for hyperbolic systems of conservation laws. Math. Comput. 38(158), 339–374 (1982). https://doi.org/10.1090/S0025-5718-1982-0645656-0

    Article  MathSciNet  MATH  Google Scholar 

  19. Dumbser, M., Toro, E.F.: A simple extension of the Osher Riemann solver to non-conservative hyperbolic systems. J. Sci. Comput. 48, 70–88 (2011). https://doi.org/10.1007/s10915-010-9400-3

    Article  MathSciNet  MATH  Google Scholar 

  20. Dumbser, M., Balsara, D.S.: A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems. J. Comput. Phys. 304, 275–319 (2016). https://doi.org/10.1016/j.jcp.2015.10.014

    Article  MathSciNet  MATH  Google Scholar 

  21. Brio, M., Wu, C.C.: An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 75, 400–422 (1988). https://doi.org/10.1016/0021-9991(88)90120-9

    Article  MathSciNet  MATH  Google Scholar 

  22. Ryu, D.S., Jones, T.W.: Numerical magnetohydrodynamics in astrophysics: algorithm and test for one-dimensional flow. Astrophys. J. 442, 228–258 (1995). https://doi.org/10.1086/175437

    Article  Google Scholar 

  23. Roe, P.L., Balsara, D.S.: Notes on the eigensystem of magnetohydrodynamics. SIAM J. Appl. Math. 56, 57–67 (1996). https://doi.org/10.1137/S003613999427084X

    Article  MathSciNet  MATH  Google Scholar 

  24. Cargo, P., Gallice, G.: Roe matrices for ideal MHD and systematic construction of Roe matrices for systems of conservation laws. J. Comput. Phys. 136, 446–466 (1997). https://doi.org/10.1006/jcph.1997.5773

    Article  MathSciNet  MATH  Google Scholar 

  25. Balsara, D.S.: Linearized formulation of the Riemann problem for adiabatic and isothermal magnetohydrodynamics. Astrophys. J. Suppl. 116, 119–131 (1998). https://doi.org/10.1086/313092

    Article  Google Scholar 

  26. Miyoshi, T., Kusano, K.: A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics. J. Comput. Phys. 208, 315–344 (2005). https://doi.org/10.1016/j.jcp.2005.02.017

    Article  MathSciNet  MATH  Google Scholar 

  27. Gurski, K.F.: An HLLC-type approximate Riemann solver for ideal magnetohydrodynamics. SIAM J. Sci. Comput. 25(6), 2165–2187 (2004). https://doi.org/10.1137/S1064827502407962

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, S.: An HLLC Riemann solver for magnetohydrodynamics. J. Comput. Phys. 203, 344–357 (2005). https://doi.org/10.1016/j.jcp.2004.08.020

    Article  MathSciNet  MATH  Google Scholar 

  29. Liou, M.S., Steffen Jr., C.J.: A new flux splitting scheme. J. Comput. Phys. 107(1), 23–39 (1993). https://doi.org/10.1006/jcph.1993.1122

    Article  MathSciNet  MATH  Google Scholar 

  30. Liou, M.S.: A sequel to AUSM: AUSM\(+\). J. Comput. Phys. 129(2), 364–382 (1996). https://doi.org/10.1006/jcph.1996.0256

    Article  MathSciNet  MATH  Google Scholar 

  31. Kim, K.H., Kim, C., Rho, O.H.: Methods for the accurate computations of hypersonic flows: I. AUSMPW\(+\) scheme. J. Comput. Phys. 174, 38–80 (2001). https://doi.org/10.1006/jcph.2001.6873

    Article  MathSciNet  MATH  Google Scholar 

  32. Liou, M.-S.: A sequel to AUSM, part II: AUSM\({+}\)-up for all speeds. J. Comput. Phys. 214, 137–170 (2006). https://doi.org/10.1016/j.jcp.2005.09.020

    Article  MathSciNet  MATH  Google Scholar 

  33. Shima, E., Kitamura, K.: Parameter-free simple low-dissipation AUSM-family scheme for all speeds. AIAA J. 49(8), 1693–1709 (2011). https://doi.org/10.2514/1.J050905

    Article  Google Scholar 

  34. Kitamura, K., Shima, E.: Towards shock-stable and accurate hypersonic heating computations: a new pressure flux for AUSM-family schemes. J. Comput. Phys. 245, 62–83 (2013). https://doi.org/10.1016/j.jcp.2013.02.046

    Article  MathSciNet  MATH  Google Scholar 

  35. Kitamura, K., Shima, E., Fujimoto, K., Wang, Z.J.: Performance of low-dissipation Euler fluxes and preconditioned LU-SGS at low speeds. Commun. Comput. Phys. 10(1), 90–119 (2011). https://doi.org/10.4208/cicp.041109.160910a

    Article  MathSciNet  MATH  Google Scholar 

  36. Weiss, J.M., Smith, W.A.: Preconditioning applied to variable and constant density flows. AIAA J. 33(11), 2050–2057 (1995). https://doi.org/10.2514/3.12946

    Article  MATH  Google Scholar 

  37. Li, X., Gu, C.: An all-speed Roe-type scheme and its asymptotic analysis of low Mach number behavior. J. Comput. Phys. 227, 5144–5159 (2008). https://doi.org/10.1016/j.jcp.2008.01.037

    Article  MathSciNet  MATH  Google Scholar 

  38. Kitamura, K.: Assessment of SLAU2 and other flux functions with slope limiters in hypersonic shock-interaction heating. Comput. Fluids 129, 134–145 (2016). https://doi.org/10.1016/j.compfluid.2016.02.006

    Article  MathSciNet  MATH  Google Scholar 

  39. Pandolfi, M., D’Ambrosio, D.: Numerical instabilities in upwind methods: analysis and cures for the “Carbuncle” phenomenon. J. Comput. Phys. 166(2), 271–301 (2001). https://doi.org/10.1006/jcph.2000.6652

    Article  MathSciNet  MATH  Google Scholar 

  40. Kitamura, K., Shima, E., Roe, P.: Carbuncle phenomena and other shock anomalies in three dimensions. AIAA J. 50(12), 2655–2669 (2012). https://doi.org/10.2514/1.J051227

    Article  Google Scholar 

  41. Chauvat, Y., Moschetta, J.M., Gressier, J.: Shock wave numerical structure and the carbuncle phenomenon. Int. J. Numer. Methods Fluids 47(8–9), 903–909 (2005). https://doi.org/10.1002/fld.916

    Article  MATH  Google Scholar 

  42. Dumbser, M., Moschetta, J.M., Gressier, J.: A matrix stability analysis of the carbuncle phenomenon. J. Comput. Phys. 197(2), 647–670 (2004). https://doi.org/10.1016/j.jcp.2003.12.013

    Article  MATH  Google Scholar 

  43. Quirk, J.J.: A contribution to the great Riemann solver debate. Int. J. Numer. Methods Fluids 18(6), 555–574 (1994). https://doi.org/10.1002/fld.1650180603

    Article  MathSciNet  MATH  Google Scholar 

  44. Kitamura, K., Roe, P., Ismail, F.: Evaluation of Euler fluxes for hypersonic flow computations. AIAA J. 47, 44–53 (2009). https://doi.org/10.2514/1.33735

    Article  Google Scholar 

  45. Barth, T.J.: Some notes on shock-resolving flux functions part 1: stationary characteristics. NASA TM-101087 (1989)

  46. Hanayama, H., Takahashi, K., Tomisaka, K.: Generation of seed magnetic fields in primordial supernova remnants. ArXiv e-prints arXiv:0912.2686 (2009)

  47. Balsara, D.S.: Total variation diminishing scheme for adiabatic and isothermal magnetohydrodynamics. Astrophys. J. Suppl. Ser. 116, 133–153 (1998). https://doi.org/10.1086/313093

    Article  Google Scholar 

  48. Stone, J.M., Gardiner, T.A., Teuben, P., Hawley, J.F., Simon, J.B.: ATHENA: a new code for astrophysical MHD. Astrophys. J. Suppl. Ser. 178(1), 137–177 (2008). https://doi.org/10.1086/588755

    Article  Google Scholar 

  49. Matsumoto, Y., Asahina, Y., Kudoh, Y., Kawashima, T., Matsumoto, J., Takahashi, H.R., Minoshima, T., Zenitani, S., Miyoshi, T., Matsumoto, R.: Magnetohydrodynamic simulation code CANS\(+\): assessments and applications. ArXiv e-prints arXiv:1611.01775 (2016)

  50. Tzeferacos, P., Fatenejad, M., Flocke, N., Graziani, C., Gregori, G., Lamb, D.Q., Lee, D., Meinecke, J., Scopatz, A., Weide, K.: FLASH MHD simulations of experiments that study shock-generated magnetic fields. High Energy Density Phys. 17(Part A), 24–31 (2015). https://doi.org/10.1016/j.hedp.2014.11.003

    Article  Google Scholar 

  51. Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., Ferrari, A.: PLUTO: a numerical code for computational astrophysics. (2007) arXiv:astro-ph/0701854

  52. Shen, Y., Zha, G., Huerta, M.A.: E-CUSP scheme for the equations of ideal magnetohydrodynamics with high order WENO scheme. J. Comput. Phys. 231, 6233–6247 (2012). https://doi.org/10.1016/j.jcp.2012.04.015

    Article  MathSciNet  Google Scholar 

  53. Han, S.H., Lee, J.I., Kim, K.H.: Accurate and robust pressure weight advection upstream splitting method for magnetohydrodynamics equations. AIAA J. 47(4), 970–981 (2009). https://doi.org/10.2514/1.39375

    Article  Google Scholar 

  54. Xisto, C.M., Páscoa, J.C., Oliveira, P.J.: A pressure-based high resolution numerical method for resistive MHD. J. Comput. Phys. 275, 323–345 (2014). https://doi.org/10.1016/j.jcp.2014.07.009

    Article  MathSciNet  MATH  Google Scholar 

  55. Kitamura, K., Hashimoto, A.: Reduced dissipation AUSM-family fluxes: HR-SLAU2 and HR-AUSM+-up for high resolution unsteady flow simulations. Comput. Fluids 126, 41–57 (2016). https://doi.org/10.1016/j.compfluid.2015.11.014

    Article  MathSciNet  MATH  Google Scholar 

  56. Matsuyama, S.: Performance of all-speed AUSM-family schemes for DNS of low Mach number turbulent channel flow. Comput. Fluids 91, 130–143 (2014). https://doi.org/10.1016/j.compfluid.2013.12.010

    Article  MathSciNet  MATH  Google Scholar 

  57. Batchelor, G.K.: The conditions for dynamical similarity of motions of a frictionless perfect-gas atmosphere. Q. J. R. Meteorol. Soc. 79(340), 224–235 (1953). https://doi.org/10.1002/qj.49707934004

    Article  Google Scholar 

  58. Ogura, Y., Phillips, N.: Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci. 19, 173–179 (1962) https://doi.org/10.1175/1520-0469(1962)019%3C0173:SAODAS%3E2.0.CO;2

  59. Gough, D.O.: The anelastic approximation for thermal convection. J. Atmos. Sci. 26, 448–456 (1969). https://doi.org/10.1175/1520-0469(1969)026%3C0448:TAAFTC%3E2.0.CO;2

  60. Hotta, H., Rempel, M., Yokoyama, T.: High-resolution calculations of the solar global convection with the reduced speed of sound technique. I. The structure of the convection and the magnetic field without the rotation. Astrophys. J. 786, 24 (2014). https://doi.org/10.1088/0004-637X/786/1/24

    Article  Google Scholar 

  61. Brown, B.P., Vasil, G.M., Zweibel, E.G.: Energy conservation and gravity waves in sound-proof treatments of stellar interiors. Part I. Anelastic approximations. Astrophys. J. 756, 109 (2012). https://doi.org/10.1088/0004-637X/756/2/109

    Article  Google Scholar 

  62. Vasil, G.M., Lecoanet, D., Brown, B.P., Wood, T.S., Zweibel, E.G.: Energy conservation and gravity waves in sound-proof treatments of stellar interiors. II. Lagrangian constrained analysis. Astrophys. J. 773, 169 (2013). https://doi.org/10.1088/0004-637X/773/2/169

    Article  Google Scholar 

  63. Rogers, T.M., Glatzmaier, G.A.: Angular momentum transport by gravity waves in the solar interior. Astrophys. J. 653(1), 756–764 (2006). https://doi.org/10.1086/507259

    Article  Google Scholar 

  64. Rogers, T.M., MacGregor, K.B.: On the interaction of internal gravity waves with a magnetic field—II. Convective forcing. Mon. Not. R. Astron. Soc. 410(2), 946–962 (2011). https://doi.org/10.1111/j.1365-2966.2010.17493.x

    Article  Google Scholar 

  65. MacGregor, K.B., Rogers, T.M.: Reflection and ducting of gravity waves inside the Sun. Sol. Phys. 270(2), 417–436 (2011). https://doi.org/10.1007/s11207-011-9771-0

    Article  Google Scholar 

  66. Brun, A.S., Miesch, M.S., Toomre, J.: Modeling the dynamical coupling of solar convection with the radiative interior. Astrophys. J. 742, 79 (2011). https://doi.org/10.1088/0004-637X/742/2/79

    Article  Google Scholar 

  67. Lantz, S.R.: Dynamical behavior of magnetic fields in a stratified, convecting fluid layer. Ph.D. Thesis, Cornell University (1992)

  68. Braginsky, S.I., Roberts, P.H.: Equations governing convection in Earth’s core and the geodynamo. Geophys. Astrophys. Fluid Dyn. 79(1), 1–97 (1995). https://doi.org/10.1080/03091929508228992

    Article  Google Scholar 

  69. ITER Physics Basis Editors et al.: ITER physics basis. Nucl. Fusion 39, 2137 (1999). https://doi.org/10.1088/0029-5515/39/12/301

  70. Loarte, A., Liu, F., Huijsmans, G.T.A., Kukushkin, A.S., Pitts, R.A.: MHD stability of the ITER pedestal and SOL plasma and its influence on the heat flux width. J. Nucl. Mater. 463, 401–405 (2015). https://doi.org/10.1016/j.jnucmat.2014.11.122

    Article  Google Scholar 

  71. Balsara, D.S.: Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. Ser. 151, 149–184 (2004). https://doi.org/10.1086/381377

    Article  Google Scholar 

  72. Balsara, D.S., Spicer, D.S.: A staggered Mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamics simulation. J. Comput. Phys. 149, 270–292 (1999). https://doi.org/10.1006/jcph.1998.6153

    Article  MathSciNet  MATH  Google Scholar 

  73. Dedner, A., Kemm, F., Kröner, D., Munz, C.D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175, 645–673 (2002). https://doi.org/10.1006/jcph.2001.6961

    Article  MathSciNet  MATH  Google Scholar 

  74. Tóth, G.: The \(\nabla \cdot {\varvec {B}} = 0\) constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161, 605–652 (2000). https://doi.org/10.1006/jcph.2000.6519

    Article  MathSciNet  MATH  Google Scholar 

  75. Powell, K.G., Roe, P.L., Linde, T., Gombosi, T.I., De Zeeuw, D.L.: A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154, 284–309 (1999). https://doi.org/10.1006/jcph.1999.6299

    Article  MathSciNet  MATH  Google Scholar 

  76. Balsara, D.S.: Multidimensional HLLE Riemann solver; application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 229, 1970–1993 (2010). https://doi.org/10.1016/j.jcp.2009.11.018

    Article  MathSciNet  MATH  Google Scholar 

  77. Balsara, D.S.: A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 231, 7476–7503 (2012). https://doi.org/10.1016/j.jcp.2011.12.025

    Article  MathSciNet  MATH  Google Scholar 

  78. Balsara, D.S.: Multidimensional Riemann problem with self-similar internal structure, part I: application to hyperbolic conservation laws on structured meshes. J. Comput. Phys. 277, 163–200 (2014). https://doi.org/10.1016/j.jcp.2014.07.053

    Article  MathSciNet  MATH  Google Scholar 

  79. Balsara, D.S., Nkonga, B.: Multidimensional Riemann problem with self-similar internal structure—part III—a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems. J. Comput. Phys. 346, 25–48 (2017). https://doi.org/10.1016/j.jcp.2017.05.038

    Article  MathSciNet  MATH  Google Scholar 

  80. Balsara, D.S.: Self-adjusting, positivity preserving high order schemes for hydrodynamic and magnetohydrodynamics. J. Comput. Phys. 231, 7504–7517 (2012). https://doi.org/10.1016/j.jcp.2012.01.032

    Article  MathSciNet  Google Scholar 

  81. Shima, E., Kitamura, K.: AUSM like expression of HLLC scheme and its extension to all speed scheme. In: 6th European Conference on Computational Fluid Dynamics (ECFD VI) Barcelona, Spain (2014)

  82. Luo, H., Baum, J.D., Löhner, R.: Extension of Harten–Lax–van Leer scheme for flows at all speeds. AIAA J. 43(6), 1160–1166 (2005). https://doi.org/10.2514/1.7567

    Article  Google Scholar 

  83. Park, S.H., Lee, J.E., Kwon, J.H.: Preconditioned HLLE method for flows at all Mach numbers. AIAA J. 44(11), 2645–2653 (2006). https://doi.org/10.2514/1.12176

    Article  Google Scholar 

  84. Stix, M.: The Sun: An Introduction, 2nd edn. Astronomy and Astrophysics Library. Springer, Berlin (2002). ISBN 3-540-20741-4. https://doi.org/10.1007/978-3-642-56042-2

  85. Huang, K., Wu, H., Yu, H., Yan, D.: Cures for numerical shock instability in HLLC solver. Int. J. Numer. Methods Fluids 65(9), 1026–1038 (2011). https://doi.org/10.1002/fld.2217

    Article  MATH  Google Scholar 

  86. Zha, G., Shen, Y., Huerta, M.: Rotated hybrid low diffusion ECUSP-HLL scheme and its applications to hypersonic flows. In: 20th AIAA Computational Fluid Dynamics Conference, AIAA Paper 2011-3545 (2011). https://doi.org/10.2514/6.2011-3545

  87. Ihm, S.-W., Kim, C.: Computations of homogeneous-equilibrium two-phase flows with accurate and efficient shock-stable schemes. AIAA J. 46(12), 3012–3037 (2008). https://doi.org/10.2514/1.35097

    Article  Google Scholar 

  88. Dai, W., Woodward, P.R.: An approximate Riemann solver for ideal magnetohydrodynamics. J. Comput. Phys. 111, 354–372 (1994). https://doi.org/10.1006/jcph.1994.1069

    Article  MATH  Google Scholar 

  89. Pierce, A.D.: ACOUSTICS—An Introduction to Its Physical Principles and Applications, pp. 20–22. Acoustical Society of America, New York (1989)

    Google Scholar 

  90. Kitamura, K., Hashimoto, A., Murakami, K., Aoyama, T. and Nakamura, Y.: High resolution CFD/CAA hybrid analysis of supersonic jet interacting with walls. In: 37th AIAA Fluid Dynamics Conference and Exhibit, Miami, FL, AIAA Paper 2007-3871 (2007). https://doi.org/10.2514/6.2007-3871

  91. Happenhofer, N., Grimm-Strele, H., Kupka, F., Löw-Baselli, B., Muthsam, H.: A low Mach number solver: enhancing applicability. J. Comput. Phys. 236, 96–118 (2013). https://doi.org/10.1016/j.jcp.2012.11.002

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been conducted while the first author (K. Kitamura) was visiting at the University of Notre Dame. We would like to express gratitude to the University of Notre Dame for hosting the first author and also to Yokohama National University for financial support. The first author also thanks Shigenobu Hirose and Takashi Minoshima at JAMSTEC (Japan Agency for Marine-Earth Science and Technology), Japan (introduced through Eiji Shima, JAXA), and Nishant M. Narechania at University of Toronto, Canada, and Dan Hori at Nagoya University, Japan, for providing him with fundamental knowledge on astrophysics and nuclear fusion, respectively. Last but not least, he really appreciates Meng-Sing Liou at NASA Glenn Research Center for his continuous discussions on SLAU2, one of AUSM-family fluxes. The second author (DSB) acknowledges support via NSF Grants NSF-DMS-1361197, NSF-ACI-1533850, NSF-DMS-1622457, and NSF-ACI-1713765. Several simulations were performed on a cluster at UND that is run by the Center for Research Computing. Computer support on NSF’s XSEDE and Blue Waters computing resources is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kitamura.

Additional information

Communicated by H. Luo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix 1: AUSMPW\(+\), AUSMPW\(+\)–HLLI, AUSMPW\(+\)2, and AUSMPW\(+\)2–HLLI for MHD

The AUSMPW\(+\) flux was already extended to MHD by Han et al. [53]. This form, however, turned out to be unstable in some numerical tests, as was the case with the original SLAU2. Thus, it is modified, as in SLAU2, in which the gasdynamic part and magnetic part are handled differently, as follows. The Euler part is

$$\begin{aligned} \mathbf{F}_{\mathrm{AUSMPW}+\left( {\mathrm{Euler}} \right) }= & {} \bar{M}_L^+ c_{1/2} {{\varvec{\Phi }} }_L +\bar{M}_R^- c_{1/2} {{\varvec{\Phi }} }_R+{\mathrm{P}}^{+}{} \mathbf{P}_L\nonumber \\&+\,\text {P}^{-}{\mathbf{P}_{R}}+\frac{1}{2}\left( {\mathbf{F}_{\mathrm{B},L} +\mathbf{F}_{\mathrm{B},R}} \right) , \end{aligned}$$
(13a)
$$\begin{aligned}&{{\varvec{\Phi }} }=\left( {\rho ,\rho u,\rho v,\rho w,\rho E+p_\mathrm{T}} \right) ^{\mathrm{T}}, \nonumber \\&\mathbf{F}_{\mathrm{B}} =\left( {0,-B_{1/2} B_x ,-B_{1/2} B_y ,-B_{1/2} B_z ,0} \right) ^{\mathrm{T}}, \end{aligned}$$
(13b)
$$\begin{aligned}&{} \mathbf{P}=\left( {0,p_\mathrm{T} ,0,0,-B_{1/2} \left( {\mathbf{u}\cdot \mathbf{B}} \right) } \right) ^{\mathrm{T}}, \end{aligned}$$
(13c)

where \(B_{1/2} =\frac{B_{x,L} +B_{x,R} }{2}\) as in [53], and for \(m_{1/2}=\overline{M}_L^+ +\overline{{M}}_R^- \ge 0\),

$$\begin{aligned} \overline{{M}}_L^+= & {} M_L^+ +M_R^- \cdot \left[ {\left( {1-w} \right) \cdot \left( {1+f_R } \right) -f_L } \right] ,\nonumber \\ \overline{{M}}_R^-= & {} M_R^- \cdot w\cdot \left( {1+f_R } \right) , \end{aligned}$$
(14a)

and for \(m_{1/2}< 0\),

$$\begin{aligned}&\overline{{M}}_L^+ = M_L^+ \cdot w\cdot \left( {1+f_L } \right) , \nonumber \\&\overline{{M}}_R^- =M_R^- +M_L^+ \cdot \left[ {\left( {1-w} \right) \cdot \left( {1+f_L } \right) -f_R } \right] . \end{aligned}$$
(14b)

The pressure-based weighting functions are given by:

$$\begin{aligned}&w=1-\hbox {min}\left( {\frac{p_{\mathrm{T},L} }{p_{\mathrm{T},R} },\frac{p_{\mathrm{T},R} }{p_{\mathrm{T},L} }} \right) ^{3}, \end{aligned}$$
(14c)
$$\begin{aligned}&f_{L/R} =\left\{ {{\begin{array}{ll} \left( {\frac{p_{L/R} }{p_{\mathrm{T},s} }-1} \right) ,&{}\quad \hbox {if }\,\,p_{\mathrm{T},s} \ne 0, \\ \\ 0,&{}\quad \hbox {if}\,\,p_{\mathrm{T},s} =0, \\ \end{array} }} \right. \end{aligned}$$
(14d)
$$\begin{aligned}&p_{\mathrm{T},s} =\hbox {P}^{+}p_{\mathrm{T},L} +\hbox {P}^{-}p_{\mathrm{T},R}, \end{aligned}$$
(14e)

where the pressure flux, which was not given in [53] or [54], is assumed as the standard AUSM form as (3d) and (3e) (that drops off higher-order terms):

$$\begin{aligned} {{\text {P}}^ + } = \left\{ \begin{array}{ll} \frac{1}{2}\left( {1 + {\text {sign}}\left( {{M_L}} \right) } \right) ,&{}\quad {\text {if}}~\left| {{M_L}} \right| \ge 1 \\ \\ \frac{1}{4}{{\left( {{M_L} + 1} \right) }^2}\left( {2 - {M_L}} \right) ,&{}\quad {\text {otherwise}}, \end{array}\right. \end{aligned}$$
(3d)
$$\begin{aligned} {\text {P}}^{-} = \left\{ \begin{array}{ll} \frac{1}{2}\left( {1 - {\text {sign}}\left( {{M_R}} \right) } \right) ,&{}\quad {\text {if}}\,\left| {{M_R}} \right| \ge 1 \\ \\ \frac{1}{4}{{\left( {{M_R} - 1} \right) }^2}\left( {2 + {M_R}} \right) ,&{}\quad {\text {otherwise}}, \end{array}\right. \end{aligned}$$
(3e)

and the mass flux switch, again not given in [53] or [54], is assumed as follows (again dropping off higher-order terms):

$$\begin{aligned} M^{+}=\left\{ {{\begin{array}{ll} \frac{1}{2}\left( {M_L +\left| {M_L } \right| } \right) ,&{}\quad \hbox {if}\left| {M_L } \right| \ge 1 \\ \\ \frac{1}{4}\left( {M_L +1} \right) ^{2},&{}\quad \hbox {otherwise}, \\ \end{array} }} \right. \\ \end{aligned}$$
(9d)
$$\begin{aligned} M^{-}=\left\{ {{\begin{array}{ll} \frac{1}{2}\left( {M_R -\left| {M_R } \right| } \right) ,&{}\quad \hbox {if}\left| {M_R } \right| \ge 1 \\ \\ -\frac{1}{4}\left( {M_R -1} \right) ^{2},&{}\quad \hbox {otherwise}, \\ \end{array} }} \right. \end{aligned}$$
(9e)
Fig. 8
figure 8

Problem 3 solutions, density; AUSMPW\(+\) and AUSMPW\(+\)–HLLI

where

$$\begin{aligned}&M_L =\frac{u_L }{\bar{{c}}},\quad M_R =\frac{u_R }{\bar{{c}}}, \end{aligned}$$
(15a)
$$\begin{aligned}&\bar{{c}}=\min \left( {{\begin{array}{cc} {c_{f,L} ,}&{} {c_{f,R} } \\ \end{array} }} \right) , \end{aligned}$$
(15b)

that is, the minimum value of the left and the right c (fast magnetosonic speed) is taken.

The magnetic part is common to SLAU2 for MHD and hence omitted. Also, as in SLAU2, another version has also been developed which does not use HLL but a simple AUSM form in the magnetic part, and this works well as in the present AUSMPW\(+\). The solutions are not shown. Furthermore, the same idea as in Sect. 3.2 will lead to “AUSMPW\(+\)–HLLI.”

The selected numerical results are shown in Fig. 8 for Problem 3 (Colliding Flow). In this problem, in contrast to SLAU2 and SLAU2–HLLI (Fig. 3), AUSMPW\(+\) produces only small wiggles and very slight undershoot \((x \approx -\,0.0)\) that are similar in AUSMPW\(+\)–HLLI (Fig. 8). For this particular high-speed test, AUSMPW\(+\) suppressed wiggles in SLAU2 which is designed for both high and low speeds. For the other problems, SLAU2 represents AUSMPW\(+\), and SLAU2–HLLI does AUSMPW\(+\)–HLLI, respectively, except for Problem 2 (Ryu–Jones shock tube) in which SLAU2–HLLI, AUSMPW\(+\), and AUSMPW\(+\)–HLLI removed small wiggles seen in SLAU2.

Furthermore, since AUSMPW\(+\) does not have a low-speed scaling term, we replaced its pressure flux with that of the SLAU2, leading to “AUSMPW\(+\)2” and “AUSMPW\(+\)2–HLLI” as follows:

$$\begin{aligned} \mathbf{F}_{\mathrm{AUSMPW}+2\left( {\mathrm{Euler}} \right) }= & {} \overline{M}_L^+ c_{1/2} {\varvec{\Phi } }_L +\overline{M}_R^- c_{1/2} {{\varvec{\Phi }} }_R\nonumber \\&\quad +\,\mathbf{P}_{\mathrm{AUSMPW}+2} +\frac{1}{2}\left( {\mathbf{F}_{\mathrm{B},L} +\mathbf{F}_{\mathrm{B},R} } \right) ,\nonumber \\ \end{aligned}$$
(16a)
$$\begin{aligned}&\mathbf{P}_{\mathrm{AUSMPW}+2}\nonumber \\&\quad = \left( {{\begin{array}{c} 0 \\ {\tilde{p}} \\ 0 \\ 0 \\ \hbox {P}^{+}\cdot \left\{ {-u_L B_{x, L} -v_L B_{y,L} -w_L B_{z,\hbox {}L} } \right\} B_{1/2}\\ \quad +\hbox {P}^{-}\cdot \left\{ {-u_R B_{x,R} -v_R B_{y,R} -w_R B_{z,R} } \right\} B_{1/2} \\ \end{array} }} \right) ,\nonumber \\ \end{aligned}$$
(16b)
Fig. 9
figure 9

Problem 7 solutions (including AUSMPW\(+\)2 and AUSMPW\(+\)2–HLLI)

where

$$\begin{aligned} \left( {\tilde{p}} \right) _{\mathrm{AUSMPW}+2}= & {} \left( {\tilde{p}} \right) _{\mathrm{SLAU}2} =\frac{p_{\mathrm{T},L} +p_{\mathrm{T},R} }{2}\nonumber \\&+\,\frac{\hbox {P}^{+}-\hbox {P}^{-}}{2}\left( {p_{\mathrm{T},L} -p_{\mathrm{T},R} } \right) \nonumber \\&+\,\sqrt{\frac{\mathbf{u}_L^2 +\mathbf{u}_R^2 }{2}} \cdot \left( {\hbox {P}^{+}+\hbox {P}^{-}-1} \right) \bar{\rho }\bar{c}\nonumber \\ \end{aligned}$$
(16c)

is borrowed from SLAU2. The rest of the parts are the same with AUSMPW\(+\) or AUSMPW\(+\)–HLLI, resulting in AUSMPW\(+\)2 or AUSMPW\(+\)2–HLLI, respectively. We confirmed that in all the previous test cases this change did not affect the solutions. Let us mention that another all-speed version of AUSMPW\(+\) is available in [87] for gasdynamics.

Figure 9 shows the pressure profiles in the first 20 cells at \(t = 1\) of Problem 7. AUSMPW\(+\)2 preserved 13% of the initial amplitude, followed by AUSMPW\(+\)2–HLLI (13%). AUSMPW\(+\) conserved slightly lower amplitude (12%), indicating the small but actual effect of the low Mach scaling introduced in AUSMPW\(+\)2 and AUSMPW\(+\)2–HLLI. In this problem, the SLAU2 showed the best performance (17%) and the Roe was the worst (11%).

1.2 Appendix 2: Analysis of SLAU2 for MHD

As conducted in [53], the SLAU2 for MHD behaviors at contact discontinuity and tangential discontinuity is compared with analytical solutions.

  1. 1.

    Contact discontinuity: \(\rho _{L} \ne \rho _{R}, u_{L}=u_{R} = 0, v_{L}=v_{R}, w_{L}=w_{R}, B_{yL }=B_{yR}, B_{zL}=B_{zR}, p_{L}=p_{R}, B_{x} \ne 0\). Thus, referring to (1b),

    figure c

    fluxes from left to right cells are: \(F_{1,\mathrm{exact}}=\rho _{L}u_{L} = 0; F_{2,\mathrm{exact}}=p_{\mathrm{T}}-B_{x}^{2}; F_{3,\mathrm{exact}} = - B_{x} B_{y,L}; F_{4,\mathrm{exact}} = - B_{x} B_{z,L}; F_{5,\mathrm{exact}} = - B_{x} (v_{L}B_{y,L} + w_{L}B_{z,L}); (F_{6,\mathrm{exact}} = 0); F_{7,\mathrm{exact}} = - v_{L}B_{x}; F_{8,\mathrm{exact}} = - w_{L}B_{x}\).

  2. 2.

    Tangential discontinuity: \(\rho _{L} \ne \rho _{R}, u_{L}=u_{R} = 0, v_{L} \ne v_{R}, w_{L} \ne w_{R}, B_{yL }\ne B_{yR}, B_{zL} \ne B_{zR}, p_{\mathrm{T},L}=p_{\mathrm{T},R}, B_{x} = 0\). The corresponding analytical fluxes are: \(F_{1,\mathrm{exact}}=\rho _{L}u_{L} = 0; F_{2,\mathrm{exact}}=p_{\mathrm{T}}; F_{3,\mathrm{exact}} = 0; F_{4,\mathrm{exact}} = 0; F_{5,\mathrm{exact}} = 0; (F_{6,\mathrm{exact}} = 0); F_{7,\mathrm{exact}} = 0; F_{8,\mathrm{exact}} = 0\).

Fig. 10
figure 10

Gresho vortex test solutions (Mach number contours, \(0 \le M \le 0.01)\). a SLAU2 and b Roe

In the SLAU2,

$$\begin{aligned} {\left( \dot{m}\right) }_{\mathrm{SLAU}2}= & {} \frac{1}{2}\left\{ \rho _L \left( {u_L +\left| {\bar{V_n }} \right| ^{+}} \right) \right. \nonumber \\&\left. +\,\rho _R \left( {u_R -\left| {\bar{V_n }} \right| ^{-}} \right) \right. \nonumber \\&\left. -\frac{\chi }{\bar{c}}\left( {p_{\mathrm{T},R} -p_{\mathrm{T},L} } \right) \right\} =0 \end{aligned}$$
(17)

and

$$\begin{aligned} \left( {\tilde{p}} \right) _{\mathrm{SLAU}2}= & {} \frac{p_{\mathrm{T},L} +p_{\mathrm{T},R} }{2}+\frac{\hbox {P}^{+}-\hbox {P}^{-}}{2}\left( {p_{\mathrm{T},L} -p_{\mathrm{T},R} } \right) \nonumber \\&+\,\sqrt{\frac{\mathbf{u}_L^2 +\mathbf{u}_R^2 }{2}}\cdot \left( {\hbox {P}^{+}+\hbox {P}^{-}-1} \right) \bar{\rho }\bar{c}=p_{\mathrm{T}}\nonumber \\ \end{aligned}$$
(18)

at both discontinuities. Thus, the SLAU2 solutions are as follows:

  1. 1.

    Contact discontinuity

$$\begin{aligned} F_{1, \mathrm{SLAU2}}= & {} 0 = F_{1, \mathrm{exact}}, \end{aligned}$$
(19a)
$$\begin{aligned} F_{2,\mathrm{SLAU}2}= & {} p_\mathrm{T} -B_x^2 =F_{2,\mathrm{exact}}, \end{aligned}$$
(19b)
$$\begin{aligned} F_{3,\mathrm{SLAU}2}= & {} -B_x \frac{B_{y,L} +B_{y,R} }{2}=-B_x B_{y,L} =F_{3,\mathrm{exact}}, \nonumber \\ \end{aligned}$$
(19c)
$$\begin{aligned} F_{4,\mathrm{SLAU}2}= & {} -B_x \frac{B_{z,L} +B_{z,R} }{2}=-B_x B_{z,L} =F_{4,\mathrm{exact}}, \nonumber \\ \end{aligned}$$
(19d)
$$\begin{aligned} F_{5,\mathrm{SLAU}2}= & {} -B_x \frac{v_L B_{z,L} +w_L B_{z,L} +v_R B_{z,R} +w_R B_{z,R} }{2},\nonumber \\= & {} -B_x \left( {v_L B_{z,L} +w_L B_{z,L} } \right) =F_{5,\mathrm{exact}}, \end{aligned}$$
(19e)

since \(\hbox {P}^{+} = \hbox {P}^{-} = 0.5\) at \(u = 0\).

$$\begin{aligned} F_{7, \,\mathrm{SLAU2}}= & {} -v_{L}B_{\mathrm{x}}=F_{7, \,\mathrm{exact}}, \end{aligned}$$
(19f)
$$\begin{aligned} F_{8, \,\mathrm{SLAU2}}= & {} -w_{L}B_{\mathrm{x}}=F_{8, \,\mathrm{exact}}. \end{aligned}$$
(19g)

Thus, the contact discontinuity is preserved by SLAU2.

  1. 2.

    Tangential discontinuity

Similarly,

$$\begin{aligned} F_{1, \,\mathrm{SLAU2}}= & {} 0 = F_{1, \,\mathrm{exact}}, \end{aligned}$$
(20a)
$$\begin{aligned} F_{2, \,\mathrm{SLAU2}}= & {} p_{\mathrm{T}}=F_{2,\, \mathrm{exact}},\end{aligned}$$
(20b)
$$\begin{aligned} F_{3, \,\mathrm{SLAU2}}= & {} 0 = F_{3, \,\mathrm{exact}},\end{aligned}$$
(20c)
$$\begin{aligned} F_{4, \,\mathrm{SLAU2}}= & {} 0 = F_{4, \,\mathrm{exact}},\end{aligned}$$
(20d)
$$\begin{aligned} F_{5, \,\mathrm{SLAU2}}= & {} 0 = F_{5, \,\mathrm{exact}},\end{aligned}$$
(20e)
$$\begin{aligned} F_{7, \,\mathrm{SLAU2}}= & {} 0 = F_{7, \,\mathrm{exact}},\end{aligned}$$
(20f)
$$\begin{aligned} F_{8,\, \mathrm{SLAU2}}= & {} 0 = F_{8,\, \mathrm{exact}}. \end{aligned}$$
(20g)

Therefore, the tangential discontinuity is also proved to be conserved.

1.3 Appendix 3: Gresho Vortex

In order to confirm the efficacy of SLAU2 at a low Mach number, the Gresho vortex [91] is solved using SLAU2 (a three-wave solver with low Mach scaling) and Roe (a full-wave solver without low Mach scaling, as is the case also for the HLLI). The problem setup is as follows: A square domain of \([0, 1] \times [0, 1]\) is filled with \(40 \times 40\) square cells, with the periodic boundary condition. The initial condition depends on the radius r from the vortex center, \((x_{\mathrm{c}}, y_{\mathrm{c}}) = (0.5, 0.5)\), i.e., \(r=\sqrt{\left( {x-x_{\mathrm{c}} } \right) ^{2}+\left( {y-y_{\mathrm{c}} } \right) ^{2}}\).

$$\begin{aligned}&\rho =1.0, \end{aligned}$$
(21a)
$$\begin{aligned}&p_0 =\frac{\rho }{\gamma M^{2}}, \end{aligned}$$
(21b)
$$\begin{aligned}&u_\theta =\left\{ {{\begin{array}{ll} 5r,&{}\quad \hbox {if}\,\,0\le r\le 0.2, \\ \\ 2-5r,&{}\quad \hbox {if}\,\,0.2\le r\le 0.4, \\ \\ 0,&{}\quad \hbox {if}\,\,r\ge 0.4, \\ \end{array} }} \right. \end{aligned}$$
(21c)
$$\begin{aligned}&p=\left\{ {{\begin{array}{ll} p_0 +12.5r^{2},&{}\quad \hbox {if}\,\,0\le r\le 0.2, \\ \\ p_0 +12.5r^{2}+4\left( {1-5r-\hbox {ln}\left( {0.2} \right) +\hbox {ln}\left( r \right) } \right) ,&{}\quad \hbox {if}\,\,0.2\le r\le 0.4, \\ \\ p_0 -2+4\hbox {ln}\left( 2 \right) ,&{}\quad \hbox {if}\,\,r\ge 0.4, \\ \end{array} }} \right. \nonumber \\ \end{aligned}$$
(21d)

where M is Mach number, \(M = 0.01\), \(\gamma \) is the specific heat ratio, \(\gamma = 1.4\), and \(u_{{\theta }}\) is the angular velocity, converted to Cartesian velocity components as

$$\begin{aligned}&u=-u_\theta \hbox {sin}\theta =-u_\theta \frac{y-y_{\mathrm{c}} }{r}, \end{aligned}$$
(22a)
$$\begin{aligned}&v=-u_\theta \hbox {cos}\theta =u_\theta \frac{x-x_{\mathrm{c}} }{r}, \end{aligned}$$
(22b)
$$\begin{aligned}&\theta =\hbox {arctan}2\left( {y-y_{\mathrm{c}} ,x-x_{\mathrm{c}} } \right) . \end{aligned}$$
(22c)

The computations are run for 20,000 steps with \(\varDelta t = 1 \times 10^{-4}\, (\hbox {CFL} \approx 0.4)\), i.e., until \(t = 2\). The Mach number contours are compared in Fig. 10. The SLAU2 clearly maintains the vortex structure, while it is smeared by the Roe-type Riemann solver.

Note that this problem is 2D gasdynamic. The MHD version of such a problem is left for future work, since multi-dimensional MHD involves divergence-free treatment which is beyond the scope of the present paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitamura, K., Balsara, D.S. Hybridized SLAU2–HLLI and hybridized AUSMPW\(+\)–HLLI Riemann solvers for accurate, robust, and efficient magnetohydrodynamics (MHD) simulations, part I: one-dimensional MHD. Shock Waves 29, 611–627 (2019). https://doi.org/10.1007/s00193-018-0842-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-018-0842-0

Keywords

Navigation