Skip to main content
Log in

On the use of adaptive multiresolution method with time-varying tolerance for compressible fluid flows

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

In this paper, a fully adaptive multiresolution (MR) finite difference scheme with a time-varying tolerance is developed to study compressible fluid flows containing shock waves in interaction with solid obstacles. To ensure adequate resolution near rigid bodies, the MR algorithm is combined with an immersed boundary method based on a direct-forcing approach in which the solid object is represented by a continuous solid-volume fraction. The resulting algorithm forms an efficient tool capable of solving linear and nonlinear waves on arbitrary geometries. Through a one-dimensional scalar wave equation, the accuracy of the MR computation is, as expected, seen to decrease in time when using a constant MR tolerance considering the accumulation of error. To overcome this problem, a variable tolerance formulation is proposed, which is assessed through a new quality criterion, to ensure a time-convergence solution for a suitable quality resolution. The newly developed algorithm coupled with high-resolution spatial and temporal approximations is successfully applied to shock–bluff body and shock-diffraction problems solving Euler and Navier–Stokes equations. Results show excellent agreement with the available numerical and experimental data, thereby demonstrating the efficiency and the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abgrall, R., Harten, A.: Multiresolution representation in unstructured meshes. SIAM J. Numer. Anal. 35(6), 2128–2146 (1998). doi:10.1137/S0036142997315056

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuvška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15(4), 736–754 (1978). doi:10.1137/0715049

    Article  MathSciNet  MATH  Google Scholar 

  3. Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics. Birkhäuser, Basel (2003). doi:10.1007/978-3-0348-7605-6

  4. Bell, J., Berger, M.J., Saltzman, J., Welcome, M.: Three-dimensional adaptive mesh refinement for hyperbolic conservation laws. SIAM J. Sci. Comput. 15, 127–138 (1994). doi:10.1137/0915008

    Article  MathSciNet  MATH  Google Scholar 

  5. Bentaleb, L., Roussel, O., Tenaud, C.: Adaptive multiresolution methods for the simulation of shocks/shear layer interaction in confined flows. In: Numerical Mathematics and Advanced Applications, pp. 761–769. Springer, Berlin (2006). doi:10.1007/978-3-540-34288-5_74

  6. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 67–84 (1989). doi:10.1016/0021-9991(89)90035-1

    Article  MATH  Google Scholar 

  7. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984). doi:10.1016/0021-9991(84)90073-1

    Article  MathSciNet  MATH  Google Scholar 

  8. Bihari, B.L.: Multiresolution schemes for conservation laws with viscosity. J. Comput. Phys. 123, 207–225 (1996). doi:10.1006/jcph.1996.0017

    Article  MathSciNet  MATH  Google Scholar 

  9. Bihari, B.L., Harten, A.: Multiresolution schemes for the numerical solution of 2-D conservation laws I. SIAM J. Sci. Comput. 18(2), 315–354 (1997). doi:10.1137/S1064827594278848

    Article  MathSciNet  MATH  Google Scholar 

  10. Bihari, B.L., Schwendeman, D.: Multiresolution schemes for the reactive Euler equations. J. Comput. Phys. 154, 197–230 (1999). doi:10.1006/jcph.1999.6312

    Article  MathSciNet  MATH  Google Scholar 

  11. Brandt, A.: Multi-level adaptive solutions to boundary value problems. Math. Comput. 31, 333–390 (1977). doi:10.2307/2006422

    Article  MathSciNet  MATH  Google Scholar 

  12. Bryson, A.E., Gross, R.W.F.: Diffraction of strong shocks by cones, cylinders, and spheres. J. Fluid Mech. 10, 1–16 (1961). doi:10.1017/S0022112061000019

    Article  MathSciNet  MATH  Google Scholar 

  13. Chang, S., Chang, K.: On the shock–vortex interaction in Schardin’s problem. Shock Waves 10(5), 333–343 (2000). doi:10.1007/s001930000061

    Article  MATH  Google Scholar 

  14. Chaudhuri, A., Hadjadj, A., Chinnayya, A.: On the use of immersed boundary methods for shock/obstacle interactions. J. Comput. Phys. 230(5), 1731–1748 (2011). doi:10.1016/j.jcp.2010.11.016

    Article  MathSciNet  MATH  Google Scholar 

  15. Chaudhuri, A., Hadjadj, A., Chinnayya, A., Palerm, S.: Numerical study of compressible mixing layers using high-order WENO schemes. J. Sci. Comput. 47(2), 170–197 (2011). doi:10.1007/s10915-010-9429-3

    Article  MathSciNet  MATH  Google Scholar 

  16. Chiavassa, G., Donat, R.: Point value multiscale algorithms for 2D compressible flows. SIAM J. Sci. Comput. 23(3), 805–823 (2001). doi:10.1137/S1064827599363988

    Article  MathSciNet  MATH  Google Scholar 

  17. Cohen, A.: Wavelet methods in numerical analysis. In: Handbook of Numerical Analysis, vol. 7. Elsevier, Amsterdam (2000). doi:10.1016/S1570-8659(00)07004-6

    MATH  Google Scholar 

  18. Cohen, A., Dyn, N., Kaber, S.M., Postel, M.: Multiresolution schemes on triangles for scalar conservation laws. J. Comput. Phys. 161, 264–286 (2000). doi:10.1006/jcph.2000.6503

    Article  MathSciNet  MATH  Google Scholar 

  19. Cohen, A., Kaber, S.M., Müller, S., Postel, M.: Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comput. 72, 183–225 (2003). doi:10.1090/S0025-5718-01-01391-6

    Article  MathSciNet  MATH  Google Scholar 

  20. Dahmen, W., Gottschlich-Müller, B., Müller, S.: Multiresolution schemes for conservation laws. Numer. Math. 88(3), 399–443 (2001). doi:10.1007/s211-001-8009-3

    Article  MathSciNet  MATH  Google Scholar 

  21. Deiterding, R., Domingues, M.O., Gomes, S.M., Schneider, K.: Comparison of adaptive multiresolution and adaptive refinement applied to simulations of the compressible Euler equations. SIAM J. Sci. Comput. 38(5), S173–S193 (2016). doi:10.1137/15M1026043

    Article  MathSciNet  MATH  Google Scholar 

  22. Domingues, M., Gomes, S., Roussel, O., Schneider, K.: An adaptive multiresolution scheme with local time-stepping for evolutionary PDEs. J. Comput. Phys. 227, 3758–3780 (2008). doi:10.1016/j.jcp.2007.11.046

    Article  MathSciNet  MATH  Google Scholar 

  23. Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: Space-time adaptive multiresolution methods for hyperbolic conservation laws: Applications to compressible euler equations. Appl. Numer. Math. 59(9), 2303–2321 (2009). doi:10.1016/j.apnum.2008.12.018

    Article  MathSciNet  MATH  Google Scholar 

  24. Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: Adaptive multiresolution methods. ESAIM Proc. 34, 1–96 (2011). doi:10.1051/proc/201134001

    Article  MathSciNet  MATH  Google Scholar 

  25. Ghaffari, S.A.: Development of an adaptive multiresolution method to study the near wall behavior of two-dimensional vortical flows. M.Sc. Thesis, University of Provence Aix-Marseille I (2014)

  26. Ghias, R., Mittal, R., Dong, H.: A sharp interface immersed boundary method for compressible viscous flows. J. Comput. Phys. 225(1), 528–553 (2007). doi:10.1016/j.jcp.2006.12.007

    Article  MathSciNet  MATH  Google Scholar 

  27. Gottschlich-Müller, B., Müller, S.: Adaptive finite volume schemes for conservation laws based on local multiresolution techniques. In: Hyperbolic Problems: Theory, Numerics, Applications, pp. 385–394. Birkhäuser (1999). doi:10.1007/978-3-0348-8720-5_42

  28. Hadjadj, A., Kudryavtsev, A.: Computation and flow visualization in high-speed aerodynamics. J. Turbul. 6, 1–25 (2005). doi:10.1080/14685240500209775

    Article  MathSciNet  Google Scholar 

  29. Harten, A.: Discrete multi-resolution analysis and generalized wavelets. Appl. Numer. Math. 12, 153–193 (1993). doi:10.1016/0168-9274(93)90117-A

    Article  MathSciNet  MATH  Google Scholar 

  30. Harten, A.: Adaptive multiresolution schemes for shock computations. J. Comput. Phys. 115, 319–338 (1994). doi:10.1006/jcph.1994.1199

    Article  MathSciNet  MATH  Google Scholar 

  31. Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Commun. Pure Appl. Math. 48, 1305–1342 (1995). doi:10.1002/cpa.3160481201

    Article  MathSciNet  MATH  Google Scholar 

  32. Hejazialhosseini, B., Rossinelli, D., Bergdorf, M., Koumoutsakos, P.: High order finite volume methods on wavelet-adapted grids with local time-stepping on multicore architectures for the simulation of shock-bubble interactions. J. Comput. Phys. 229(22), 8364–8383 (2010). doi:10.1016/j.jcp.2010.07.021

    Article  MATH  Google Scholar 

  33. Iaccarino, G., Verzicco, R.: Immersed boundary technique for turbulent flow simulations. Appl. Mech. Rev. 56(3), 331–347 (2003). doi:10.1115/1.1563627

    Article  Google Scholar 

  34. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996). doi:10.1006/jcph.1996.0130

    Article  MathSciNet  MATH  Google Scholar 

  35. Kaca, J.: An interferometric investigation of the diffraction of a planar shock wave over a semicircular cylinder. UTIAS Technical Note 269 (1988)

  36. Liu, X., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994). doi:10.1006/jcph.1994.1187

    Article  MathSciNet  MATH  Google Scholar 

  37. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37(1), 239–261 (2005). doi:10.1146/annurev.fluid.37.061903.175743

    Article  MathSciNet  MATH  Google Scholar 

  38. Müller, S., Stiriba, Y.: Fully adaptive multiscale schemes for conservation laws employing locally varying time stepping. J. Sci. Comput. 30(3), 493–531 (2007). doi:10.1007/s10915-006-9102-z

    Article  MathSciNet  MATH  Google Scholar 

  39. O’Rourke, J.: Computational Geometry in C, 2nd edn. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  40. Peskin, C.S.: Flow patterns around heart valves: a digital computer method for solving the equations of motion. Ph.D. Thesis, Yeshiva University (1972)

  41. Reckinger, S.M., Vasilyev, O.V., Fox-Kemper, B.: Adaptive volume penalization for ocean modeling. Ocean Dyn. 62(8), 1201–1215 (2012). doi:10.1007/s10236-012-0555-3

    Article  Google Scholar 

  42. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981). doi:10.1016/0021-9991(81)90128-5

    Article  MathSciNet  MATH  Google Scholar 

  43. Roussel, O., Schneider, K.: Coherent vortex simulation of weakly compressible turbulent mixing layers using adaptive multiresolution methods. J. Comput. Phys. 229(6), 2267–2286 (2010). doi:10.1016/j.jcp.2009.11.034

    Article  MathSciNet  MATH  Google Scholar 

  44. Roussel, O., Schneider, K., Tsigulin, A., Bockhorn, H.: A conservative fully adaptive multiresolution algorithm for parabolic PDEs. J. Comput. Phys. 188(2), 493–523 (2003). doi:10.1016/S0021-9991(03)00189-X

    Article  MathSciNet  MATH  Google Scholar 

  45. Skews, B.W.: The perturbed region behind a diffracting shock wave. J. Fluid Mech. 29, 705–719 (1967). doi:10.1017/S0022112067001132

    Article  Google Scholar 

  46. Skews, B.W.: The shape of a diffracting shock wave. J. Fluid Mech. 29(2), 297–304 (1967). doi:10.1017/S0022112067000825

    Article  Google Scholar 

  47. Skews, B., Law, C., Muritala, A., Bode, S.: Shear layer behavior resulting from shock wave diffraction. Exp. Fluids 52(2), 417–424 (2012). doi:10.1007/s00348-011-1233-9

    Article  Google Scholar 

  48. Soni, V., Roussel, O., Hadjadj, A., Moebs, G.: Parallel multi-core and multi-processor methods on point-value multiresolution algorithms for hyperbolic conservation laws. J. Parallel Distrib. Comput. (under review)

  49. Soni, V., Roussel, O., Hadjadj, A.: On the accuracy and efficiency of point-value multiresolution algorithms for solving scalar wave and Euler equations. J. Comput. Appl. Math. 323, 159–175 (2017). doi:10.1016/j.cam.2017.04.010

    Article  MathSciNet  MATH  Google Scholar 

  50. Sun, M., Takayama, K.: Vorticity production in shock diffraction. J. Fluid Mech. 478, 237–256 (2003). doi:10.1017/S0022112002003403

    Article  MathSciNet  MATH  Google Scholar 

  51. Tseng, Y.H., Ferziger, J.H.: A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys. 192(2), 593–623 (2003). doi:10.1016/j.jcp.2003.07.024

    Article  MathSciNet  MATH  Google Scholar 

  52. Tseng, T.I., Yang, R.J.: Numerical simulation of vorticity production in shock diffraction. AIAA J. 44(5), 1040–1047 (2006). doi:10.2514/1.16196

    Article  Google Scholar 

  53. Zółtak, J., Drikakis, D.: Hybrid upwind methods for the simulation of unsteady shock-wave diffraction over a cylinder. Comput. Methods Appl. Mech. 162, 165–185 (1998). doi:10.1016/S0045-7825(97)00342-3

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This study was supported by the BIOENGINE project, which is funded by the European Regional Development Fund (ERDF) and the Regional Council of Normandie, under contract HN-0002484. The authors also gratefully acknowledge the support of ANR Agence Nationale de la Recherche under grant ANR-13-MONU-0002 (MAPIE project). This work was performed using computing resources from Centre Régional Informatique et d’Applications Numériques de Normandie (CRIANN), Rouen, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hadjadj.

Additional information

Communicated by D. Zeidan and H. D. Ng.

Appendices

Appendix 1: Numerical implementation

The inviscid flux is computed using a classical fifth-order WENO scheme [34, 36] based on Roe flux splitting [42], while a fourth-order central differencing scheme is used to compute the viscous flux. An explicit third-order TVD Runge–Kutta (RK3) scheme is employed for time advancement [14, 15]. A brief description of the numerical solver is given in the context of MR formulation in Algorithm 1.

figure z

The node, leaf, and empty points in the algorithm can be referred from Fig. 1 for better clarity.

Appendix 2: Ray tracing

The ray tracing technique [39], commonly used in the field of computer graphics, is used here to identify whether a grid node belongs to a fluid or solid domain. The principle of this method is adapted to define the mask function required in the IB method such that the complex solid obstacles can be carefully defined in the computational domain.

The underlying concept of the ray tracing method makes it very flexible, since it enables the use of any CAD tool, such as AutoCAD, CATIA, to generate complex geometries. The resulting data can be easily plugged into a Cartesian grid, \(\mathcal {G}\), comprised of points,

$$\begin{aligned} \mathbf p = \left\{ (x_i,y_j) \in \mathcal {G}\,|\,i = 0,\ldots ,N_x, j = 0,\ldots ,N_y \right\} . \end{aligned}$$
(32)

The rays, from a far away location from the computational domain, are casted to \(\mathbf p \). Thus, the equation of lines passing through the source point, \(\mathbf S \), and \(\mathbf p \) can be expressed as,

$$\begin{aligned} \varLambda = \left\{ \mathbf p + m(\mathbf S -\mathbf p )\,|\,m \in \mathbb {R} \right\} . \end{aligned}$$
(33)

The solid model is converted into triangular cells and is exported in a STereoLithography (STL) format, which includes the vertices and the surface normals of each mesh element. For each triangular element, e, there exists a plane, \(\mathcal {P}\), that contains it,

$$\begin{aligned} \mathcal {P}:= \mathbf n \cdot (\mathbf x - \mathbf x _e) = 0, \end{aligned}$$
(34)

where \(\mathbf n \) and \(\mathbf x _e\) denote the surface normal vector and the vertex of e, respectively, while \(\mathbf x \) represents a vector of set of points lying inside \(\mathcal {P}\). If the intersection of \(\varLambda \) and \(\mathcal {P}\) at a point, \(p^*\), is enclosed within the element e, the counter, \(\sigma \), is incremented by 1 as,

$$\begin{aligned} \exists \,p^*(x,y) \in \mathcal {P}\,\text {s.t.}\,p^* = \varLambda \cap \mathcal {P} \rightarrow \sigma = \sigma + 1. \end{aligned}$$
(35)

Finally, the mask function is obtained by first performing the modulo operation, \(\alpha = \sigma \bmod 2\), and then,

$$\begin{aligned} \left( \alpha = 1 \rightarrow \mathrm{mask}_{i,j} = 1 \right) \wedge \left( \alpha \ne 1 \rightarrow \mathrm{mask}_{i,j} = 0 \right) . \end{aligned}$$
(36)
Fig. 14
figure 14

Concept of the ray tracing method

The ray tracing operation is illustrated schematically in Fig. 14, where \(p_n\) and \(S_n\) denote the grid and the source points, respectively. It is important to emphasize that a precondition of the watertight (STL) mesh is necessary to achieve reliable results from this technique. Moreover, in certain cases, the rays from the source to the grid point could possibly intersect with either an edge or a corner of the mesh element. In such scenarios, it is necessary to use a secondary source of ray to confirm the intersection (see \(p_4, p_5\), and \(S_2\) in Fig. 14).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, V., Hadjadj, A. & Roussel, O. On the use of adaptive multiresolution method with time-varying tolerance for compressible fluid flows. Shock Waves 29, 37–50 (2019). https://doi.org/10.1007/s00193-017-0777-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-017-0777-x

Keywords

Navigation