Skip to main content

Advertisement

Log in

The impact of market innovations on the dissemination of social norms: the sustainability case

  • Regular Article
  • Published:
Journal of Evolutionary Economics Aims and scope Submit manuscript

Abstract

The paper presents a model that links the diffusion process of a technological innovation and the dissemination of a social norm. Our approach introduces a new dimension to the interaction between markets and social norms beyond the interplay of monetary and non-monetary incentives: the innovation of material goods as a catalyst of norm evolution. We analyze how the dissemination of a social norm may be affected by product innovation, which adds to the variation of products with respect to their level of norm compliance. The market is linked to the process of norm adoption via psychological forces, endogenizing the rates of adoption and abandonment. We derive necessary and sufficient conditions for a) a positive impact of the innovation on the level of norm adoption and b) for multiplicity of norm equilibria. In concluding, we discuss several policy implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For a normative theory of social norms in market economies, see Bergsten (1985).

  2. For a discussion of an extension of Walrasian economics by social norms and psychological dispositions, see Bowles and Gintis (2000). For a multi-agent simulation model on the psychological factors such as the need for identity on market dynamics, see Janssen and Jager (2001).

  3. More than 85% of these expenditures are spent on private transportation.

  4. Exceptions are things such as solar panels for the accommodation category or the attendance of a pro-environment concert.

  5. For discussions of the conditions for discrete choice models generating linear aggregate demand functions, see, Jaffe and Weyl 2010, Armstrong and Vickers 2015, and the literature cited therein. We refrain from adopting a discrete choice approach as our focus is on the interaction between aggregate market demand and social norm dynamics.

  6. We believe that profits, especially in large incorporations, are the main concerns of decision makers.

  7. The method was introduced under this label by Haken (1977) for the synergetic approach of aggregation of dynamics of micro-data to the dynamics of macro-data. It has been introduced to economics e.g. by Weidlich and Haag (1983). The basic idea of the method may, however, already be found in Samuelson (1947).

  8. Strictly speaking, the transition rates are the limits of the expected number of transitions per second, when we consider ever shorter time intervals (similar to the speed of a car being measured in miles per hour, but measured for a specific point in time, not for an entire hour).

  9. For example, see Weidlich and Haag (1983).

  10. We neglect the possibility of having a conformity bias that affects consumption directly. This allows us to concentrate on the effects of the conformity bias on norm adoption and abandonment. We conjecture that this has no qualitative effects because the conformity bias affecting consumption directly should only reinforce the effects of the norm-related conformity bias.

  11. Note that if there are two extreme points q Low <q High, then \( \dot{q} \)(q High)>0 implies q High <1 and \( \dot{q} \)(q Low)<0 implies q Low >0 by inspection of (7), given strictly positive demand. Given \( \dot{q} \)(q High)>0 and \( \dot{q} \)(q Low)<0, the fact that \( \dot{q} \)(0)>0, \( \dot{q} \)(1)<0 implies that q Low is the minimum and q Hgih is the maximum. Hence, only the two conditions with respect to the existence of two extrema and the sign condition at the extrema points remain.

  12. See the proof of Proposition 4 for the derivation of partial derivatives.

  13. The only case in which an additional equilibrium may be in a continuity interval of \( \dot{q} \)(q) occurs if \( \dot{\tilde{q}} \)(q) has a minimum, this minimum is positive, a continuity interval of \( \dot{q} \)(q) embraces this minimum, has an interior minimum that is negative and has positive limits at both bounds.

References

  • Armstrong M, Vickers J (2015) Which demand systems can be generated by discrete choice? J Econ Theory 158:293–307

    Article  Google Scholar 

  • Benabou R, Tirole J (2006) Belief in a just world and redistributive politics. Q J Econ 121(2):699–746

    Article  Google Scholar 

  • Bergsten GS (1985) On the role of social norms in a market economy. Public Choice 45(2):113–137

    Article  Google Scholar 

  • Berry S, Levinsohn J, Pakes A (1995) Automobile prices in market equilibrium. Econometrica 63(4):841–890

    Article  Google Scholar 

  • Bohnet I, Frey BS, Huck S (2001) More order with less law: on contract enforcement, trust, and crowding. Am Polit Sci Rev 95(1):131–144

    Article  Google Scholar 

  • Bowles S, Gintis H (2000) Walrasian economics in retrospect. Q J Econ 115(4):1411–1439

    Article  Google Scholar 

  • Boyd R, Richerson PJ (1985) Culture and the evolutionary process. University of Chicago Press, Chicago

    Google Scholar 

  • Brekke KA, Kverndokk S, Nyborg K (2003) An economic model of moral motivation. J Public Econ 87(9):1967–1983

    Article  Google Scholar 

  • Cecere G, Corrocher N, Gossart C, Ozman M (2014) Lock-in and path dependence: an evolutionary approach to eco-innovations. J Evol Econ 24(5):1037–1065

    Article  Google Scholar 

  • Cialdini RB, Goldstein NJ (2004) Social influence: compliance and conformity. Annu Rev Psychol 55:591–621

    Article  Google Scholar 

  • Cordes C, Schwesinger G (2014) Technological diffusion and preference learning in the world of homo sustinens: the challenges for politics. Ecol Econ 97:191–200

    Article  Google Scholar 

  • Davidson C, Deneckere R (1986) Long-run competition in capacity, short-run competition in price, and the Cournot model. RAND J Econ 17(3):404–415

    Article  Google Scholar 

  • Dijk M, Kemp R, Valkering P (2013) Incorporating social context and co-evolution in an innovation diffusion model—with an application to cleaner vehicles. J Evol Econ 23(2):295–329

    Article  Google Scholar 

  • Ek K, Söderholm P (2008) Norms and economic motivation in the Swedish green electricity market. Ecol Econ 68(1):169–182

    Article  Google Scholar 

  • Fehr E, Gächter S (2001) Do Incentive Contracts Crowd Out Voluntary Cooperation? Institute for Empirical Research in Economics, University of Zürich, Working Paper No. 34

  • Fehr E, Kirchler E, Weichbold A, Gächter S (1998) When social norms overpower competition: gift exchange in experimental labor markets. J Labor Econ 16(2):324–351

    Article  Google Scholar 

  • Frey BS, Jegen R (2001) Motivation crowding theory. J Econ Surv 15(5):589–611

    Article  Google Scholar 

  • Gneezy U, Rustichini A (2000) A fine is a price. J Leg Stud 29(1):1–18

    Article  Google Scholar 

  • Goldberg PK (1995) Product differentiation and oligopoly in international markets: the case of the US automobile industry. Econometrica 63(4):891–951

    Article  Google Scholar 

  • Haken H (1977) Synergetics—an introduction: Nonequilibrium phase transitions and self-Organization in Physics, chemistry and biology. Springer, Berlin

    Google Scholar 

  • Hong H, Kacperczyk M (2009) The price of sin: the effects of social norms on markets. J Financ Econ 93(1):15–36

    Article  Google Scholar 

  • Huck S, Kübler D, Weibull J (2012) Social norms and economic incentives in firms. J Econ Behav Organ 83(2):173–185

    Article  Google Scholar 

  • Jaffe S, Weyl EG (2010) Linear demand systems are inconsistent with discrete choice. The BE J Theor Econ 10(1):52

    Google Scholar 

  • Janssen MA, Jager W (2001) Fashions, habits and changing preferences: simulation of psychological factors affecting market dynamics. J Econ Psychol 22(6):745–772

    Article  Google Scholar 

  • Janssen MA, Jager W (2002) Stimulating diffusion of green products. J Evol Econ 12(3):283–306

    Article  Google Scholar 

  • Johnson S (2004) Gender norms in financial markets: evidence from Kenya. World Dev 32(8):1355–1374

    Article  Google Scholar 

  • Kim AM (2007) North versus south: the impact of social norms in the market pricing of private property rights in Vietnam. World Dev 35(12):2079–2095

    Article  Google Scholar 

  • Los B, Verspagen B (2009) Localized innovation, localized diffusion and the environment: an analysis of reductions of CO2 emissions by passenger cars. J Evol Econ 19(4):507–526

    Article  Google Scholar 

  • MiD 2008 – Mobilität in Deutschland (2008) Ergebnisbericht; Struktur – Aufkommen – Emission – Trends. infas; DLR. Bundesministerium für Verkehr, Bau und Stadtentwicklung (Hg.)

  • Noailly J (2008) Coevolution of economic and ecological systems. J Evol Econ 18(1):1–29

    Article  Google Scholar 

  • Nyborg K, Howarth RB, Brekke KA (2006) Green consumers and public policy: on socially contingent moral motivation. Resour Energy Econ 28(4):351–366

    Article  Google Scholar 

  • Okuguchi K, Szidarovszky F (1990) The theory of oligopoly with multi-product firms. Springer, Berlin

    Book  Google Scholar 

  • Platteau J (1994) Behind the market stage where real societies exist. Part II: the role of moral norms. J Dev Stud 30:753–817

    Article  Google Scholar 

  • Rokeach M (1974) Change and stability in American value systems, 1968-1971. Public Opin Q 38(2):222–238

    Article  Google Scholar 

  • Rokeach M, Ball-Rokeach SJ (1989) Stability and change in American value priorities, 1968–1981. Am Psychol 44(5):775–784

    Article  Google Scholar 

  • Samuelson PA (1947) Foundations of economic analysis. Harvard Univ. Press, Cambridge, Mass

    Google Scholar 

  • Tompsett CJ, Toro PA, Guzicki M, Manrique M, Zatakia J (2006) Homelessness in the United States: assessing changes in prevalence and public opinion, 1993–2001. Am J Community Psychol 37(1–2):29–46

    Article  Google Scholar 

  • Vendrik M (2003) Dynamics of a household norm in female labour supply. J Econ Dyn Control 27(5):823–841

    Article  Google Scholar 

  • Weidlich W, Haag G (1983) Concepts and models of a quantitative sociology: the dynamics of interacting populations. Springer, Heidelberg and New York

    Book  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Federal Ministry of Education and Research (01UN1018C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Müller.

Ethics declarations

Funding

This research was financially supported by the Federal Ministry of Education and Research (01UN1018C).

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

Proof of Proposition 1: The demand system (19) in vector notion is given by \( \left(\begin{array}{c}\hfill {p}^e\hfill \\ {}\hfill {p}^g\hfill \end{array}\right)= A\left(\begin{array}{c}\hfill {X}^e\hfill \\ {}\hfill {X}^g\hfill \end{array}\right)+ b \). According to Okuguchi and Szidarovszky (1990, p.34), given the linear structure of the model, negative definiteness of A + A T is sufficient for uniqueness of the Cournot equilibrium. Eigenvalues of A + A T are given by \( -\frac{1}{\kappa -\lambda}\left(1\pm \sqrt{1-\frac{1}{\kappa -\lambda}}\right) \) and negative by inspection. QED

Proof of Proposition 2: \( \frac{\partial {m}^{\ast }}{\partial q}\underset{<}{\overset{>}{=}}0\iff \frac{\partial {m}^{\ast }}{\partial q}\underset{<}{\overset{>}{=}}0.\mathrm{QED} \)

Proof of Lemma 1: Claim 1 is obvious when X e and X g are strictly positive. Claim 2 follows from the fact that X e and X g are linear in q and thus solving Eq. (7) for q for any given value of \( \dot{\tilde{q}} \) is tantamount to solving a polynomial of degree three. The first implication of Claim 3 follows from the fact that the denominator of the derivative \( \frac{d\left({\tilde{X}}^e/{\tilde{X}}^g\right)}{ d q} \) is strictly positive and the numerator is given by:

$$ \begin{array}{l}\frac{{d\tilde{X}}^e}{ d q}{\tilde{X}}^g-\frac{{d\tilde{X}}^g}{ d q}{\tilde{X}}^e=\left({\Delta}^e\left(\frac{n}{n+1}\left({\theta}^g+{\Delta}^g q\right)-\frac{1}{n+1}\left({\theta}^e+{\Delta}^e q\right)\right)\frac{\lambda}{\kappa}\right)-\left(\frac{n}{n+1}{\Delta}^g-\frac{1}{n+1}{\Delta}^e\frac{\lambda}{\kappa}\right)\left({\theta}^e+{\Delta}^e q\right)\\ {}=\frac{n}{n+1}\left[{\theta}^g{\Delta}^e-{\theta}^e{\Delta}^g\right]\end{array} $$
(19)

The second implication of Claim 3 follows from the observation that all three terms summed up in

$$ \begin{array}{c}\frac{d\dot{\tilde{q}}}{ d q}=-\alpha \left({\sigma}_a\left(1+ CD\right)+{\sigma}_h\left(1- CD\right)\right)-\left(1-\alpha \right)\left({\sigma}_a\frac{{\tilde{X}}^e}{{\tilde{X}}^g}+{\sigma}_h\frac{{\tilde{X}}^g}{{\tilde{X}}^e}\right)\\ {}\kern1em +\left(1-\alpha \right)\left(\frac{\left(1- q\right){\sigma}_a}{{\left({\tilde{X}}^g\right)}^2}+\frac{q{\sigma}_h}{{\left({\tilde{X}}^e\right)}^2}\right)\left(\frac{{d\tilde{X}}^e}{ d q}{\tilde{X}}^g-\frac{{d\tilde{X}}^g}{ d q}{\tilde{X}}^e\right)\end{array} $$
(20)

are negative if \( \frac{d\left({\tilde{X}}^e/{\tilde{X}}^g\right)}{ d q}\le 0.\mathrm{QED} \)

1.1 Definition of MES and Approximation

In what follows, we will derive the vertices of the MES and reformulate the two differential equations \( \dot{q}\left({q}^{Low}\right)<0 \), \( \dot{q}\left({q}^{High}\right)>0 \) as differential equation for Δeg).

At q=q ex such that \( {\dot{q}}^{\prime } \)(q ex.)=0, solving for the stationary points of (7) is equivalent to solving an equation in Δeg: \( \dot{q} \)(q ex.eg))=0. Given strictly positive demand and a strictly positive conformity bias, \( \dot{q} \)(q)=0 is equivalent to:

$$ \left(1- q\right){\sigma}_a\frac{X^e}{X^g}- q{\sigma}_h\frac{X^g}{X^e}=\gamma +\beta q $$
(21)

where \( \gamma =\frac{\alpha}{1-\alpha}{\sigma}_a\left(1+ CD\right),\beta =-\frac{\alpha}{1-\alpha}\left({\sigma}_a\left(1+ CD\right)+{\sigma}_h\left(1- CD\right)\right) \).

Let \( z(q)\equiv \frac{X^e}{X^g},\sigma \equiv {\sigma}_h/{\sigma}_a \), then (21) can be written as:

$$ {\left( z(q)\right)}^2=\frac{q}{\left(1- q\right)}\sigma +\frac{\left(\gamma +\beta q\right)}{\left(1- q\right)} z(q). $$
(22)

Taking the total derivative of (22) with respect to Δe, Δg and applying the envelope theorem gives us:

$$ \left[2 z\left({q}^{e x.}\right){\left.\frac{\partial z}{\partial {\varDelta}^e}\right|}_{q={q}^{e x.}}-\frac{\left(\gamma +\beta q\right)}{\left(1- q\right)}{\left.\frac{\partial z}{\partial {\varDelta}^e}\right|}_{q={q}^{e x.}}\right] d{\varDelta}^e+\left[2 z\left({q}^{e x.}\right){\left.\frac{\partial z}{\partial {\varDelta}^g}\right|}_{q={q}^{e x.}}-\frac{\left(\gamma +\beta q\right)}{\left(1- q\right)}{\left.\frac{\partial z}{\partial {\varDelta}^g}\right|}_{q={q}^{e x.}}\right] d{\varDelta}^g=0 $$
(23)

Equation (23) amounts to \( \frac{n+1}{n}\frac{n+1}{n}+\frac{n+1}{n}=\frac{n+1}{n} \), which is equivalent to:

$$ \frac{d{\varDelta}^g}{d{\varDelta}^e}=\frac{\varDelta^g{q}^{e xtr.}+{\theta}^g}{\varDelta^e{q}^{e xtr.}+{\theta}^e}\left(>0\right) $$
(24)

Together with initial conditions: (Δe,Δg)|\( \dot{q} \)(q Max(Δe,Δg))=0 and (Δeg)|\( \dot{q} \)(q Mineg))=0 the differential eq. (24) gives rise to two boundary functions: Δe,Ming), Δe,Maxg).

Definition: All (Δeg) pairs that satisfy the following three conditions define a parameter region such that multiple equilibria exist: (1) \( {\varDelta}^e<-{\theta}^e+\frac{n}{\lambda}\left({\varDelta}^g+{\theta}^g\right) \), (2) Δee,Ming), (3) Δee,Maxg). We will refer to this set as the multiple equilibria set (MES).

Before we continue, we will state some observations based on \( \frac{d{\varDelta}^e}{d{\varDelta}^g}=\frac{1}{\frac{n+1{X}^g}{n{ X}^e}+\frac{\lambda}{n}} \) that will be helpful in the course of our argument:

  1. (1)

    The slopes of Δe,Ming),Δe,Maxg) are positive and smaller than the slope of the third constraint\( {\varDelta}^e<-{\theta}^e+\frac{n}{\lambda}\left({\varDelta}^g+{\theta}^g\right) \).

  2. (2)

    By corollary 4, \( \frac{d{\Delta}^g}{d{\Delta}^e}=\frac{\Delta^g q+{\theta}^g}{\Delta^e q+{\theta}^e} \) is ceteris paribus decreasing in q

  3. (3)

    At point A, the relevant constraints have the same slope.

We are able to determine the coordinates for points A and B (see Fig. 2) analytically. For better readability, Table 1 presents the results for α=0. Note that there exist multiple equilibria if and only if (Δe)B >(Δe)A.

Table 1 Vertices of multiple equilibria set for α=0

Approximation for α=0:

The differential equations given by (25) cannot be solved analytically. In the following, we present our approximation strategy for α=0, such that we can state explicit sufficient conditions for multiple equilibria to exist.

Note that the values for q that corresponds to (Δeg) pairs that are elements of the graph of Δe,Maxg) range from \( {q}^C=\frac{\left( n{\theta}^g-{\lambda \theta}^e\right)}{3\left( n{\varDelta}^g-\lambda {\varDelta}^e\right)+4\left( n{\theta}^g-{\lambda \theta}^e\right)} \) to q A=1. We can use the (Δg)B as a lower bound for Δg and by that, can give a lower bound for q independent of Δe and Δg, i.e. \( \underset{\bar{\mkern6mu}}{q}=\frac{4{\left( n+1\right)}^2{\theta}^e}{4{\left( n+1\right)}^2{\theta}^e+3\lambda \left( n{\theta}^g-{\lambda \theta}^e\right)} \). The system \( \dot{q}\left({q}^C\right)=0 \), \( {\dot{q}}^{\prime}\left({q}^C\right)=0 \) can be solved for Δe and Δg as a function of q. If we plug in \( \underset{\bar{\mkern6mu}}{q} \), we get as point D a (Δeg) pair on the graph of Δe,Maxg) that corresponds to a maximum for the dynamics in (7) that equals \( \underset{\bar{\mkern6mu}}{q} \).

$$ {\left(\begin{array}{l}{\varDelta}^e\\ {}{\varDelta}^g\end{array}\right)}^D=\left(\begin{array}{l}\frac{4\sqrt{3{\theta}^e{\lambda \tau}^3}-{\theta}^e\left(4{\left( n+1\right)}^2{\theta}^e+9\lambda \tau \right)}{4{\left( n+1\right)}^2{\theta}^e}\\ {}\frac{3\underset{\bar{\mkern6mu}}{q}{\left({\varDelta}^e\right)}^D-2\tau +\sqrt{-9{\underset{\bar{\mkern6mu}}{q}}^2+6\underset{\bar{\mkern6mu}}{q}{\left({\varDelta}^e\right)}^D\left({\left({\varDelta}^e\right)}^D-{\theta}^e\right)+6\left(1- q\right){\left({\varDelta}^e\right)}^D{\theta}^e-{\left( n+1\right)}^2{\left({\theta}^e\right)}^2+{\tau}^2}}{3 n\underset{\bar{\mkern6mu}}{q}}\end{array}\right) $$

We approximate the upper and lower boundaries by linear functions intersecting point B and D, respectively. Our observation above, that the slope Δe,Ming) is decreasing in q, gives us a lower bound for the slope by \( \frac{\theta^e}{\theta^g} \). Figure 3 illustrates our approximation procedure. Note that, under our approach, MES is not empty if and only if the area spanned by X g(1)>0 and the two approximating linear function is non-empty.

Proposition (sufficient conditions): If α=0 and \( 0<{\theta}^e<\frac{n}{\lambda}{\theta}^g \), \( \dot{\tilde{q}}=0 \) has three solutions if:

$$ \left({\Delta}^e,{\Delta}^g\right)\in \left\{\begin{array}{l}\left.\left({\Delta}^e,{\Delta}^g\right)\right|{\Delta}^e<-{\theta}^e+\frac{n}{\lambda}\left({\Delta}^g+{\theta}^g\right),{\Delta}^e<\frac{\theta^e}{\theta^g}{\Delta}^g+\frac{{\left( n{\theta}^g-{\lambda \theta}^e\right)}^3}{4 n{\left( n+1\right)}^2{\theta}^g{\theta}^e}\\ {}\kern2.04em {\Delta}^e>\frac{{\left({\Delta}^e\right)}^D\underset{\bar{\mkern6mu}}{q}-{\theta}^e}{{\left({\Delta}^g\right)}^D\underset{\bar{\mkern6mu}}{q}-{\theta}^g}{\Delta}^g+{\left({\Delta}^e\right)}^D-\frac{{\left({\Delta}^e\right)}^D\underset{\bar{\mkern6mu}}{q}-{\theta}^e}{{\left({\Delta}^g\right)}^D\underset{\bar{\mkern6mu}}{q}-{\theta}^g}{\left({\Delta}^g\right)}^D\end{array}\right\}, $$

where \( \underset{\bar{\mkern6mu}}{q}=\frac{4{\left( n+1\right)}^2{\theta}^e}{4{\left( n+1\right)}^2{\theta}^e+3\lambda \left( n{\theta}^g-{\lambda \theta}^e\right)} \).

Approximation for α ≠ 0

Since we have an analytical solution for point A, we now focus the general solution for the tangent point D:

$$ \begin{array}{l}{\left({\varDelta}^e\right)}^D=\frac{1}{4{\left(1+ n\right)}^2\left(1+\alpha \left(-2+{CD}^2\alpha \right)\right){\delta}_a}\left(-\Omega +\sqrt{\frac{8{\left(1+ n\right)}^2\left(1+\alpha \left(-2+{CD}^2\alpha \right)\right){\delta}_a{\theta}^e}{q^3\left(1-\alpha \right){\delta}_h}\Psi +{\Omega}^2}\right)\\ {}{\left({\varDelta}^g\right)}^D=\frac{1}{2{nq}^2\left(1-\alpha \right){\delta}_h}\left(\begin{array}{l}-{q}^2{\left({\varDelta}^e\right)}^D\left(\begin{array}{l}\left(1+ n\right)\alpha \left(\left(1+ CD\right){\delta}_a+\left(1- CD\right){\delta}_h\right)\\ {}-2\left(1-\alpha \right){\delta}_h\lambda \end{array}\right)\\ {}+ q\left(\begin{array}{l}-2{\delta}_h\tau +\alpha \Big(\left(1+ CD\right)\left(1+ n\right){\delta}_a\left({\left({\varDelta}^e\right)}^D-{\theta}^e\right)\\ {}+{\delta}_h\left(\left(-1+ CD\right)\left(1+ n\right){\theta}^e+2\tau \right)\Big)+\left(1+ n\right){\left({\varDelta}^e\right)}^D\Sigma \end{array}\right)\\ {}+\left(1+ n\right){\theta}^e\left(\left(1+ CD\right){\alpha \delta}_a+\Sigma \right)\end{array}\right)\end{array} $$

where

$$ \begin{array}{l}\tau \equiv \left( n{\theta}^g-{\lambda \theta}^e\right)\hfill \\ {}\Sigma \equiv \sqrt{{\left(1+ CD\right)}^2{\left(-1+ q\right)}^2{\alpha}^2{\delta_a}^2-2\left(-1+ q\right) q\left(2+\alpha \left(-4+\alpha +{CD}^2\alpha \right)\right){\delta}_a{\delta}_h+{\left(-1+ CD\right)}^2{q}^2{\alpha}^2{\delta_h}^2}\hfill \\ {}\Psi \equiv \left(1+ n\right)\Big(2 q{\alpha \delta}_a{\delta}_h\left(-3\left(1+ n\right)\left(-3+2 q\right){\theta}^e+2\left(1+ CD\right) n\left(-1+ q\right){\theta}^g-2\left(1+ CD\right)\left(-1+ q\right){\theta}^e\lambda \right)+\hfill \\ {}{\alpha}^3\Big(-2 q{\delta}_a{\delta}_h\left(\left(1+ n\right)\left(-1+{CD}^2\left(-2+ q\right)+ q\right){\theta}^e-\left(1+ CD\right)\left(1+{CD}^2\right) n\left(-1+ q\right){\theta}^g+\left(1+ CD\right)\left(1+{CD}^2\right)\left(-1+ q\right){\theta}^e\lambda \right)+\hfill \\ {}{\left(1+ CD\right)}^2{\left(-1+ q\right)}^2{\delta_a}^2\left(-\left(1+ CD\right) n{\theta}^g+{\theta}^e\left(1+ n+\lambda + CD\lambda \right)\right)+{\left(-1+ CD\right)}^2{q}^2{\delta_h}^2\left(-\left(1+ CD\right) n{\theta}^g+{\theta}^e\left(1+ n+\lambda + CD\lambda \right)\right)\Big)+\hfill \\ {}\alpha \left(-\left(1+ CD\right)\left(1+ n\right)\left(-1+ q\right){\delta}_a{\theta}^e+ q{\delta}_h\left(-\left(-1+ CD\right)\left(1+ n\right){\theta}^e-4 n{\theta}^g+4{\theta}^e\lambda \right)\right)\Sigma +2 q{\delta}_h\left(\left(1+ n\right)\left(-3+2 q\right){\delta}_a{\theta}^e+\left( n{\theta}^g-{\theta}^e\lambda \right)\Sigma \right)-\hfill \\ {}{\alpha}^2\left({\left(1+ CD\right)}^2\left(1+ n\right){\left(-1+ q\right)}^2{\delta_a}^2{\theta}^e+{\delta}_a\right(2 q{\delta}_h\left(-\left(1+ n\right)\left(-7+{CD}^2\left(-2+ q\right)+5 q\right){\theta}^e+4\left(1+ CD\right) n\left(-1+ q\right){\theta}^g-4\left(1+ CD\right)\left(-1+ q\right){\theta}^e\lambda \right)-\hfill \\ {}\left(1+ CD\right)\left(-1+ q\right)\left(-\left(1+ CD\right) n{\theta}^g+{\theta}^e\left(1+ n+\lambda + CD\lambda \right)\right)\Sigma \left)+ q{\delta}_h\left({\left(-1+ CD\right)}^2\left(1+ n\right) q{\delta}_h{\theta}^e+\left(-\left(1+{CB}^2\right) n{\theta}^g+{\theta}^e\left(1+ n+\lambda + CD\left(-1- n+ CD\lambda \right)\right)\right)\Sigma \right)\right)\Big)\hfill \\ {}\Omega \equiv \frac{1}{q^2\left(-1+\alpha \right){\delta}_h}\left(\Psi +2{\left(1+ n\right)}^2 q\left(-1+\alpha \right)\left(1+\alpha \left(-2+{CD}^2\alpha \right)\right){\delta}_a{\delta}_h{\theta}^e\right)\hfill \end{array} $$

To find such a point, we apply the following approach: First, we express two of the conditions for the inflection point C, \( \dot{q} \)(q)=0, \( {\dot{q}}^{\hbox{'}} \)(q)=0 in terms of Δg(q). With these two conditions, we can solve for Δe. However, we still have to find a q that will be greater than q IP and independent of Δe and Δg.

For the general case α ≠ 0, we again choose q such that we can be sure that it will correspond to a point on the graph of Δe,Maxg). This can be achieved by choosing (Δg)B as a lower bound for Δg and ‑θ e as a lower bound for Δe.

$$ \begin{array}{l}\underset{\bar{\mkern6mu}}{q}={q}^{IP}\left({\Delta}^g={\left({\Delta}^g\right)}^{\mathrm{B}},{\varDelta}^e=-{\theta}^e\right)=\\ {}\frac{\left(\begin{array}{l}\ {\delta}_h\left[\left(1- CD\right)\alpha \left(1+ n\right) n\left({\Delta}^g{\theta}^e+{\theta}^g{\varDelta}^e\right)+2 n\left(1-\alpha \right)\left( n{\Delta}^g-\lambda {\varDelta}^e\right)\left( n{\theta}^g-{\theta}^e\lambda \right)-2\lambda \left(\left(\left(1- CD\right)\left(1+ n\right)\alpha {\varDelta}^e\right){\theta}^e\right)\right]\\ {}+\left(1+ n\right){\delta}_a\left[\left(1+ CD\right) n\alpha \left({\Delta}^g{\theta}^e+{\theta}^g{\varDelta}^e\right)-{\left({\varDelta}^e\right)}^2\left(\left(1+ n\right)\left(1-\alpha \right)-\left(1+ CD\right)\alpha \lambda \right)+{\varDelta}^e\left( n\left(2{\theta}^e-\alpha \left(\left(1+ CD\right){\Delta}^g+2{\theta}^e\right)\right)+2{\theta}^e\left(1-\alpha -\left(1+ CD\right)\alpha \lambda \right)\right)\right]\end{array}\right)}{3\left(\left(1+ n\right){\delta}_a{\varDelta}^e\left(\left(1+ n\right)\left(-1+\alpha \right){\varDelta}^e-\left(1+ CD\right) n\alpha {\Delta}^g+\left(1+ CD\right)\alpha {\varDelta}^e\lambda \right)-{\delta}_h\left( n{\Delta}^g-{\varDelta}^e\lambda \right)\left( n{\Delta}^g-{\varDelta}^e\lambda +\alpha \left(\left(1- CD\right)\left(1+ n\right){\varDelta}^e+ n{\Delta}^g-{\varDelta}^e\lambda \right)\right)\right)}\end{array} $$

This gives us a lower bound for the maxima that correspond to Δe,Maxg) independent of Δe and Δg. We can then calculate the slope at point D: \( \frac{d{\varDelta}^e}{d{\varDelta}^e}=\frac{d{\varDelta}^e}{d{\varDelta}^e} \).

Proof of Proposition 4: The situation where MES is empty corresponds to the case point A, B and C are equal, i.e. where q Max=q Minq IP=1, \( \dot{q} \)(1)=0 and X g (1)=0. The latter two conditions provide a solution for Δg as a function of α: \( {\varDelta}^g\left(\alpha \right)=\frac{{\alpha \lambda \delta}_h\left(1- CD\right)\left( n{\theta}^g-{\lambda \theta}^e\right)}{n\left( n+1\right)\left(1-\alpha \right){\delta}_a}-{\theta}^g \). The first condition amounts to a condition for α as a function of Δg:

$$ \begin{array}{l}\alpha \left({\varDelta}^g\right)=\hfill \\ {}\frac{2 n{\left( n+1\right)}^2{\delta}_a\left({\varDelta}^g+{\theta}^g\right)\left( n{\varDelta}^g+\tau \right)+{\delta}_h{\lambda}^2{\tau}^2}{2 n{\left( n+1\right)}^2{\delta}_a\left({\varDelta}^g+{\theta}^g\right)\left( n{\varDelta}^g+\tau \right)+{\delta}_h{\lambda}^2{\tau}^2+\left(1+ n\right)\lambda \tau \left( n\left(\left(1+ CD\right){\delta}_a+2\left(1- CD\right){\delta}_h\right)\left({\varDelta}^g+{\theta}^g\right)-\left(1- CD\right){\delta}_h{\theta}^e\lambda \right)}\hfill \end{array} $$

where τ=( gλθ e). Solving these two equations for α yields the critical value:

$$ \begin{array}{l}{\alpha}^{c rit.}=\frac{\left(1- CD\right)\left( n+1\right){\theta}^e+2\left( n{\theta}^g-{\lambda \theta}^e\right)-\sqrt{{\left(\left(1- CD\right)\left( n+1\right){\theta}^e\right)}^2+4{\left( n{\theta}^g-{\lambda \theta}^e\right)}^2\left(1-{CD}^2\right)}}{2\left({CD}^2\left( n{\theta}^g-{\lambda \theta}^e\right)+\left( n+1\right)\left(1- CD\right){\theta}^e\right)}. Furthermore,\\ {}\frac{\partial {\alpha}^{c rit.}}{\partial {\theta}^g}=\frac{\partial {\alpha}^{c rit.}}{\partial n}=-\frac{\theta^e}{\theta^g}\frac{\partial {\alpha}^{c rit.}}{\partial {\theta}^e}=-\frac{n}{\theta^e}{\left.\frac{\partial {\alpha}^{c rit.}}{\partial \lambda}\right|}_{\begin{array}{l}{\theta}^e,{\theta}^g\\ {} fixed\end{array}}>0\ and\frac{\partial {\alpha}^{c rit.}}{\partial {\sigma}_a}=\frac{\partial {\alpha}^{c rit.}}{\partial {\sigma}_h}=0;\frac{\partial {\alpha}^{c rit.}}{\partial CD}>0\ which\\ {}\mathrm{implies}:\kern0.5em \frac{\partial {\alpha}^{c rit.}}{\partial {\chi}_h^e}<0;\frac{\partial {\alpha}^{c rit.}}{\partial {\chi}_h^g}>0;\frac{\partial {\alpha}^{c rit.}}{\partial {c}^e}>0;\frac{\partial {\alpha}^{c rit.}}{\partial {c}^g}<0;\frac{\partial {\alpha}^{c rit.}}{\partial k}>0. QED\end{array} $$

Derivation of the partial effects on the critical value α crit:

$$ \begin{array}{l}{\alpha}^{crit.}=\frac{\left(1- CD\right)\left( n+1\right){\theta}^e+2\left( n{\theta}^g-{\lambda \theta}^e\right)-\sqrt{{\left(\left(1- CD\right)\left( n+1\right){\theta}^e\right)}^2+4{\left( n{\theta}^g-{\lambda \theta}^e\right)}^2\left(1-{CD}^2\right)}}{2\left({CD}^2\left( n{\theta}^g-{\lambda \theta}^e\right)+\left( n+1\right)\left(1- CD\right){\theta}^e\right)}\\ {}\underset{y=2\left( n{\theta}^g-{\lambda \theta}^e\right)>0}{\overset{x=\left(1- CB\right)\left( n+1\right){\theta}^e>0}{=}}\kern1em \frac{x+ y-\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}}{CD^2 y+2 x}\\ {}\end{array} $$
$$ \begin{array}{l}1.\mathrm{claim}:\frac{\partial {\alpha}^{crit.}}{\partial {\theta}^g}>0:\\ {}\kern2.16em \frac{\partial {\alpha}^{crit.}}{\partial {\theta}^g}=\frac{\left({y}^{\hbox{'}}-\frac{2{y y}^{\hbox{'}}\left(1-{CD}^2\right)}{2\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}}\right)\left({CD}^2 y+2 x\right)-\left( x+ y-\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}\right)\left({CD}^2{y}^{\hbox{'}}\right)}{{\left({CD}^2 y+2 x\right)}^2}\\ {}\kern2.28em =\frac{y^{\hbox{'}}\left({CD}^2 y+2 x\right)-\frac{2{y y}^{\hbox{'}}\left(1-{CD}^2\right)\left({CD}^2 y+2 x\right)}{2\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}}-{ x CD}^2{y}^{\hbox{'}}-{ y CD}^2{y}^{\hbox{'}}+{CD}^2{y}^{\hbox{'}}\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}}{{\left({CD}^2 y+2 x\right)}^2}\\ {}\kern2.28em =\frac{\left(2-{CD}^2\right){ x y}^{\hbox{'}}-\frac{2{y y}^{\hbox{'}}\left(1-{CD}^2\right)\left({CD}^2 y+2 x\right)}{2\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}}+{CD}^2{y}^{\hbox{'}}\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}}{{\left({CD}^2 y+2 x\right)}^2}>0\iff \end{array} $$
$$ \begin{array}{l}\kern2.04em \left(2-{CD}^2\right){ x y}^{\hbox{'}}2\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}-2{y y}^{\hbox{'}}\left(1-{CD}^2\right)\left({CD}^2 y+2 x\right)+{CD}^2{y}^{\hbox{'}}2\left({x}^2+{y}^2\left(1-{CD}^2\right)\right)>0\overset{y^{\hbox{'}}>0}{\iff}\\ {}\kern2.04em \left(2-{CD}^2\right) x\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}- y\left(1-{CD}^2\right)\left({CD}^2 y+2 x\right)+{CD}^2\left({x}^2+{y}^2\left(1-{CD}^2\right)\right)>0\overset{x>0}{\iff}\\ {}\kern2.04em \left(2-{CD}^2\right)\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}-2 y\left(1-{CD}^2\right)+{ x CD}^2>0\iff \\ {}\kern2.04em \left(2-{CD}^2\right)\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}>2 y\left(1-{CD}^2\right)-{ x CD}^2\Leftarrow \\ {}\kern2.16em {\left(2-{CD}^2\right)}^2\left({x}^2+{y}^2\left(1-{CD}^2\right)\right)>{\left(2 y\left(1-{CD}^2\right)-{ x CD}^2\right)}^2\iff \\ {}\kern2.16em {\left(2-{CD}^2\right)}^2\left({x}^2+{y}^2\left(1-{CD}^2\right)\right)-{\left(2 y\left(1-{CD}^2\right)-{ x CD}^2\right)}^2=\left(1-{CD}^2\right){\left(2 x+{y CD}^2\right)}^2>0\end{array} $$
$$ \begin{array}{l}2.\mathrm{claim}:\frac{\partial {\alpha}^{crit.}}{\partial CD}>0\\ {}\frac{\partial {\alpha}^{crit.}}{\partial CD}=\frac{\left({x}^{\hbox{'}}-\frac{2{x x}^{\hbox{'}}-2{ CD y}^2}{2\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}}\right)\left({CD}^2 y+2 x\right)-\left( x+ y-\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}\right)\left(2 CDy+2{x}^{\hbox{'}}\right)}{{\left({CD}^2 y+2 x\right)}^2}\\ {}=\frac{x^{\hbox{'}}\left({CD}^2 y+2 x\right)-\frac{2{x x}^{\hbox{'}}-2{ CD y}^2}{2\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}}\left({CD}^2 y+2 x\right)-\left( x+ y-\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}\right)\left(2 CDy+2{x}^{\hbox{'}}\right)}{{\left({CD}^2 y+2 x\right)}^2}>0\\ {}\iff \\ {}{x}^{\hbox{'}}\left({CD}^2 y+2 x\right)-\frac{2{x x}^{\hbox{'}}-2{ CD y}^2}{2\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}}\left({CD}^2 y+2 x\right)-\left(2 CDy+2{x}^{\hbox{'}}\right)\left( x+ y\right)+\left(2 CDy+2{x}^{\hbox{'}}\right)\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}>0\\ {}\iff \\ {}-\frac{2{x x}^{\hbox{'}}-2{ CD y}^2}{2\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}}\left({CD}^2 y+2 x\right)-\left(2 CDy\right)\left( x+ y\right)-\left(2-{CD}^2\right){x}^{\hbox{'}} y+\left(2 CDy+2{x}^{\hbox{'}}\right)\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}>0\\ {}\overset{{}^{\ast }2\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}}{\iff}\\ {}-\left(2{x x}^{\hbox{'}}-2{ CD y}^2\right)\left({CD}^2 y+2 x\right)-\left(2 CDy\left( x+ y\right)+\left(2-{CD}^2\right){x}^{\hbox{'}} y\right)2\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}+\left(2 CDy+2{x}^{\hbox{'}}\right)2\left({x}^2+{y}^2\left(1-{CD}^2\right)\right)>0\end{array} $$
$$ \begin{array}{l}\iff \\ {}-2{x x}^{\hbox{'}}\left({CD}^2 y+2 x\right)+2{ CD y}^2\left({CD}^2 y+2 x\right)+\left(2 CD y+2{x}^{\hbox{'}}\right)2{x}^2+\left(2 CD y+2{x}^{\hbox{'}}\right)2{y}^2\left(1-{CD}^2\right)\\ {}-\left(2 CD y\left( x+ y\right)+\left(2-{CD}^2\right){x}^{\hbox{'}} y\right)2\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}>0\\ {}\iff \\ {}-2{x x}^{\hbox{'}}{CD}^2 y+2{ CD y}^2\left({CD}^2 y+2 x\right)+2 CD y2{x}^2+\left(2 CD y+2{x}^{\hbox{'}}\right)2{y}^2-{CD}^2\left(2 CD y+2{x}^{\hbox{'}}\right)2{y}^2\\ {}-\left(2 CD y\left( x+ y\right)+\left(2-{CD}^2\right){x}^{\hbox{'}} y\right)2\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}>0\\ {}\overset{:2 y, y>0}{\iff}\\ {}-{ x x}^{\hbox{'}}{CD}^2+ CD y\left({CD}^2 y+2 x\right)+ CD2{x}^2+\left(2 CD y+2{x}^{\hbox{'}}\right) y-{CD}^2\left(2 CD y+2{x}^{\hbox{'}}\right) y\\ {}-\left(2 CD\left( x+ y\right)+\left(2-{CD}^2\right){x}^{\hbox{'}}\right)\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}>0\end{array} $$
$$ \begin{array}{l}\iff \\ {}-{ x x}^{\hbox{'}}{CD}^2+ CD y\left({CD}^2 y+2 x\right)+ CD2{x}^2+2{ CD y}^2-{CD}^22{ CD y}^2+2{x}^{\hbox{'}} y\left(\underset{=\left(1- CD\right)\left(1+ CD\right)}{\underbrace{1-{CD}^2}}\right)\\ {}-\left(2 CD\left( x+ y\right)+\left(2-{CD}^2\right){x}^{\hbox{'}}\right)\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}>0\\ {}\overset{x^{\hbox{'}}=-\frac{x}{1- CB}}{\iff}\\ {}-{ x x}^{\hbox{'}}{CD}^2+ CD y\left({CD}^2 y+2 x\right)+ CD2{x}^2+2{ CD y}^2-{CD}^22{ CD y}^2-2 x y\left(1+ CD\right)\\ {}-\left(2 CD\left( x+ y\right)+\left(2-{CD}^2\right){x}^{\hbox{'}}\right)\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}>0\\ {}\iff \\ {}\underset{>0,{x}^{\hbox{'}}<0}{\underbrace{-{ x x}^{\hbox{'}}{CD}^2}}+{ CD y}^2\underset{>0}{\underbrace{\left(2-{CD}^2\right)}}-2 x y+2{x}^2 CD-\left(2 CD\left( x+ y\right)+\left(2-{CD}^2\right){x}^{\hbox{'}}\right)\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}>0\end{array} $$

In the next step, we first rearrange the term on the left-hand side of the last inequality and, second, we distinguish two cases to establish the strict positivity of the term.

$$ \begin{array}{l}-{ x x}^{\hbox{'}}{CD}^2+{CD y}^2\left(2-{CD}^2\right)-2 xy+2{x}^2 CD-\left(2 CD\left( x+ y\right)+\left(2-{CD}^2\right){x}^{\hbox{'}}\right)\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}\overset{x^{\hbox{'}}=-\frac{x}{1- CD}}{=}\\ {}\\ {}{x}^2\frac{CD^2}{1- CD}+{CD y}^2\left(2-{CD}^2\right)-2 xy+2{x}^2 CD-\left(2 CD\left( x+ y\right)-\left(2-{CD}^2\right)\frac{x}{1- CD}\right)\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}\overset{{}^{\ast}\left(1- CD\right)}{=}\\ {}{x}^2{CD}^2+{CD y}^2\left(2-{CD}^2\right)\left(1- CD\right)-2 xy\left(1- CD\right)+2{x}^2 CD\left(1- CD\right)-\left(2 CD\left(1- CD\right)\left( x+ y\right)-\left(2-{CD}^2\right) x\right)\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}=\\ {}{x}^2 CD\left(2- CD\right)+{y}^2 CD\left(2-{CD}^2\right)\left(1- CD\right)-2 xy\left(1- CD\right)-\left(2 CD\left(1- CD\right)\left( x+ y\right)-\left(2-{CD}^2\right) x\right)\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}=\\ {}{x}^2 CD\left(2- CD\right)+{y}^2 CD\left(2-{CD}^2\right)\left(1- CD\right)-2 xy\left(1- CD\right)-\left(2 CD\left(1- CD\right) y-\left(2+{CD}^2-2 CD\right) x\right)\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}\\ {}\end{array} $$
$$ \begin{array}{l}\underset{\bar{\mkern6mu}}{1.\mathrm{case}:}\ \left(2 CD\left(1- CD\right) y-\left(2+{CD}^2-2 CD\right) x\right)>0\\ {}{x}^2 CD\left(2- CD\right)+{y}^2 CD\left(2-{CD}^2\right)\left(1- CD\right)-2 xy\left(1- CD\right)-\left(2 CD\left(1- CD\right) y-\left(2+{CD}^2-2 CD\right) x\right)\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}\\ {}\overset{\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}< x+ y\sqrt{\left(1-{CD}^2\right)}}{>}\\ {}{x}^2 CD\left(2- CD\right)+{y}^2 CD\left(2-{CD}^2\right)\left(1- CD\right)-2 xy\left(1- CD\right)-\left(2 CD\left(1- CD\right) y-\left(2+{CD}^2-2 CD\right) x\right)\left( x+ y\sqrt{\left(1-{CD}^2\right)}\right)>0\end{array} $$
$$ \begin{array}{l}\overset{:\left(1- CD\right)}{\iff}\\ {}{x}^2\left(\frac{CD\left(2-{CD}^2\right)}{1- CD}+\frac{\left(2+{CD}^2-2 CD\right)}{1- CD}\right)+{CD y}^2\left(2-{CD}^2-2\sqrt{1-{CD}^2}\right)+2 xy\left(-1- CD+\left(2+{CD}^2-2 CD\right)\frac{\sqrt{\left(1-{CD}^2\right)}}{2\left(1- CD\right)}\right)=\\ {}={x}^2\left(\frac{2}{1- CD}\right)+{CD y}^2\underset{\ge 0}{\underbrace{\left(2-{CD}^2-2\sqrt{1-{CD}^2}\right)}}+2 xy\underset{\ge 0}{\underbrace{\left(-1- CD+\frac{1}{2\left(1- CD\right)}\left(1+{\left(1- CD\right)}^2\right)\right)}}>0\Rightarrow \mathrm{claim}\end{array} $$
$$ \begin{array}{l}\underset{\bar{\mkern6mu}}{2.\mathrm{case}:}\ \left(2 CD\left(1- CD\right) y-\left(2+{CD}^2-2 CD\right) x\right)<0\\ {}{x}^2 CD\left(2- CD\right)+{y}^2 CD\left(2-{CD}^2\right)\left(1- CD\right)-2 xy\left(1- CD\right)-\left(2 CD\left(1- CD\right) y-\left(2+{CD}^2-2 CD\right) x\right)\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}=\\ {}{x}^2 CD\left(2- CD\right)+{y}^2 CD\left(2-{CD}^2\right)\left(1- CD\right)-2 xy\left(1- CD\right)+\underset{>0}{\underbrace{\left(\left(2+{CD}^2-2 CD\right) x-2 CD\left(1- CD\right) y\right)}}\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}\\ {}\overset{\sqrt{x^2+{y}^2\left(1-{CD}^2\right)}> y\sqrt{\left(1-{CD}^2\right)}}{>}\\ {}{x}^2 CD\left(2- CD\right)+{y}^2 CD\left(2-{CD}^2\right)\left(1- CD\right)-2 xy\left(1- CD\right)+\left(\left(2+{CD}^2-2 CD\right) x-2 CD\left(1- CD\right) y\right) y\sqrt{\left(1-{CD}^2\right)}=\\ {}{x}^2 CD\left(2- CD\right)+{y}^2\left( CD\left(2-{CD}^2\right)\left(1- CD\right)-2 CD\left(1- CD\right)\sqrt{\left(1-{CD}^2\right)}\right)-2 xy\left(1- CD\right)+ xy\left(2+{CD}^2-2 CD\right)\sqrt{\left(1-{CD}^2\right)}=\\ {}{x}^2 CD\left(2- CD\right)+\left(1- CD\right){ CD y}^2\underset{\ge 0}{\underbrace{\left(2-{CD}^2-2\sqrt{\left(1-{CD}^2\right)}\right)}}+ xy\underset{\ge 0}{\underbrace{\left(\left(2+{CD}^2-2 CD\right)\sqrt{\left(1-{CD}^2\right)}-2\left(1- CD\right)\right)}}>0\Rightarrow \mathrm{claim}\end{array} $$

Proof of Proposition 5: Inserting equilibrium quantities given in (13) into (7) and evaluation at yields eq. (18). QED

Proof of Proposition 6: At the discontinuities we have m * =m eq and thus \( \dot{q}(q)=\dot{\tilde{q}}(q) \). Otherwise, m * >m eq implies \( {\tilde{X}}^e>{\widehat{X}}^e \) and \( {\tilde{X}}^g<{\widehat{X}}^g \) due to \( \frac{dX^{e\ast }}{dm}>0 \) and \( \frac{dX^{g\ast }}{dm}<0 \). Hence, \( \dot{q}(q)<\dot{\tilde{q}}(q) \) for all q in the intervals of continuity. For the second part of the claim, note that we can write \( \dot{q}=\dot{q}\left(\frac{X^e}{X^g}\left( m(q), q\right), q\right) \) and thus, \( \frac{d\dot{q}}{ d q}=\frac{\partial \dot{q}}{\partial \frac{X^e}{X^g}}\left(\frac{\partial \frac{X^e}{X^g}}{\partial m}\frac{d m}{ d q}+\frac{\partial \frac{X^e}{X^g}}{\partial q}\right)+\frac{\partial \dot{q}}{\partial q} \). Since \( \frac{dm^{\ast }}{dq}=\frac{\Delta^e}{\sqrt{k\kappa}} \) and \( \frac{dm^{eq}}{dq}=0 \) for all q in the intervals of continuity, and the other terms in \( \frac{d\dot{q}}{ d q} \) are the same for the discontinuous version of \( \dot{q} \) and its continuous approximation \( \dot{\tilde{q}} \), the observation \( \frac{\partial \dot{q}}{\partial \frac{X^e}{X^g}}=\left(1-\alpha \right)\left(\left(1- q\right){\sigma}_a+\frac{q{\sigma}_h}{{\left(\frac{X^e}{X^g}\right)}^2}\right)>0 \) implies the second claim of the Proposition. QED.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, S., von Wangenheim, G. The impact of market innovations on the dissemination of social norms: the sustainability case. J Evol Econ 27, 663–690 (2017). https://doi.org/10.1007/s00191-017-0509-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00191-017-0509-5

Keywords

JEL classifications

Navigation