Skip to main content
Log in

Determination of the optimized single-layer ionospheric height for electron content measurements over China

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The ionosphere effective height (IEH) is a very important parameter in total electron content (TEC) measurements under the widely used single-layer model assumption. To overcome the requirement of a large amount of simultaneous vertical and slant ionospheric observations or dense “coinciding” pierce points data, a new approach comparing the converted vertical TEC (VTEC) value using mapping function based on a given IEH with the “ground truth” VTEC value provided by the combined International GNSS Service Global Ionospheric Maps is proposed for the determination of the optimal IEH. The optimal IEH in the Chinese region is determined using three different methods based on GNSS data. Based on the ionosonde data from three different locations in China, the altitude variation of the peak electron density (hmF2) is found to have clear diurnal, seasonal and latitudinal dependences, and the diurnal variation of hmF2 varies from approximately 210 to 520 km in Hainan. The determination of the optimal IEH employing the inverse method suggested by Birch et al. (Radio Sci 37, 2002. doi:10.1029/2000rs002601) did not yield a consistent altitude in the Chinese region. Tests of the method minimizing the mapping function errors suggested by Nava et al. (Adv Space Res 39:1292–1297, 2007) indicate that the optimal IEH ranges from 400 to 600 km, and the height of 450 km is the most frequent IEH at both high and low solar activities. It is also confirmed that the IEH of 450–550 km is preferred for the Chinese region instead of the commonly adopted 350–450 km using the determination method of the optimal IEH proposed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Arikan F, Shukurov S, Tuna H, Arikan O, Gulyaeva T (2016) Performance of GPS slant total electron content and IRI-Plas-STEC for days with ionospheric disturbance. Geod Geodyn 7(1):1–10

    Article  Google Scholar 

  • Birch MJ, Hargreaves JK, Bailey GJ (2002) On the use of an effective ionospheric height in electron content measurement by GPS reception. Radio Sci 37(1): doi:10.1029/2000rs002601

  • Blanch J, Walter T, Enge P (2004) A new ionospheric estimation algorithm for SBAS combining kriging and tomography. In: Proceedings of the institute of navigation national technical meeting

  • Breed AM, Goodwin GL, Vandenberg AM, Essex EA, Lynn KJW, Silby JH (1997) Ionospheric total electron content and slab thickness determined in Australia. Radio Sci 32(4):1635–1643. doi:10.1029/97rs00454

    Article  Google Scholar 

  • Brunini C, Azpilicueta F (2010) GPS slant total electron content accuracy using the single layer model under different geomagnetic regions and ionospheric conditions. J Geod 84(5):293–304. doi:10.1007/s00190-010-0367-5

    Article  Google Scholar 

  • Brunini C, Meza A, Bosch W (2005) Temporal and spatial variability of the bias between TOPEX- and GPS-derived total electron content. J Geod 79(4–5):175–188

    Article  Google Scholar 

  • Brunini C, Camilion E, Azpilicueta F (2011) Simulation study of the influence of the ionospheric layer height in the thin layer ionospheric model. J Geod 85(9):637–645. doi:10.1007/s00190-011-0470-2

    Article  Google Scholar 

  • Brunini C, Van Zele MA, Meza A, Gende M (2003) Quiet and perturbed ionospheric representation according to the electron content from GPS signals. J Geophys Res Space 108(A2): doi:10.1029/2002ja009346

  • Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella S (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81(2):111–120

    Article  Google Scholar 

  • Conte JF, Azpilicueta F, Brunini C (2011) Accuracy assessment of the GPS-TEC calibration constants by means of a simulation technique. J Geod 85(10):707–714. doi:10.1007/s00190-011-0477-8

    Article  Google Scholar 

  • Davies K, Hartmann GK (1997) Studying the ionosphere with the Global Positioning System. Radio Sci 32(4):1695–1703. doi:10.1029/97rs00451

    Article  Google Scholar 

  • Hernández-Pajares M (2004) IGS ionosphere WG status report: performance of IGS ionosphere TEC maps-position paper. In: IGS Workshop, Bern

  • Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3–4):263–275. doi:10.1007/s00190-008-0266-1

    Article  Google Scholar 

  • Hernandez-Pajares M, Juan JM, Sanz J, Aragon-Angel A, Garcia-Rigo A, Salazar D, Escudero M (2011) The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques. J Geod 85(12):887–907. doi:10.1007/s00190-011-0508-5

    Article  Google Scholar 

  • Hernández-Pajares M, Roma-Dollase D, Krankowski A, García-Rigo A, Orús-Pérez R (2017) Methodology and consistency of slant and vertical assessments for ionospheric electron content models. J Geod. doi:10.1007/s00190-017-1032-z

    Google Scholar 

  • Huang Z, Yuan H (2013) Analysis and improvement of ionospheric thin shell model used in SBAS for China region. Adv Space Res 51(11):2035–2042. doi:10.1016/j.asr.2012.12.018

    Article  Google Scholar 

  • Hu L, Ning B, Liu L, Zhao B, Li G, Wu B, Huang Z, Hao X, Chang S, Wu Z (2014) Validation of COSMIC ionospheric peak parameters by the measurements of an ionosonde chain in China. Ann Geophys 32(10):1311–1319

    Article  Google Scholar 

  • Klobuchar JA (1987) Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans Aerosp Electron Syst 23(3):325–331. doi:10.1109/taes.1987.310829

    Article  Google Scholar 

  • Komjathy A (1997) Global ionospheric total electron content mapping using the global positioning system, University of New Brunswick

  • Komjathy A, Langley R (1996) An assessment of predicted and measured ionospheric total electron content using a regional GPS network. In: Proceedings of the national technical meeting of the Institute of Navigation, pp. 615–624

  • Komjathy A, Sparks L, Mannucci A, Pi X (2003) An alternative ionospheric correction algorithm for satellite-based augmentation systems in low-latitude region. In: On the CD-ROM of the proceedings of GNSS 2003 the European navigation conference, Graz

  • Krankowski A, Shagimuratov II, Ephishov II, Krypiak-Gregorczyk A, Yakimova G (2009) The occurrence of the mid-latitude ionospheric trough in GPS-TEC measurements. Adv Space Res 43(11):1721–1731. doi:10.1016/j.asr.2008.05.014

    Article  Google Scholar 

  • Lanyi GE, Roth T (1988) A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations. Radio Sci 23(4):483–492

    Article  Google Scholar 

  • Li Z, Yuan Y, Wang N, Hernandez-Pajares M, Huo X (2015) SHPTS: towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. J Geod 89(4):331–345

    Article  Google Scholar 

  • Li M, Yuan Y, Wang N, Li Z, Li Y, Huo X (2017) Estimation and analysis of Galileo differential code biases. J Geod 91:279. doi:10.1007/s00190-016-0962-1

    Article  Google Scholar 

  • Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3):565–582. doi:10.1029/97rs02707

    Article  Google Scholar 

  • Nava B, Radicella SM, Leitinger R, Coïsson P (2007) Use of total electron content data to analyze ionosphere electron density gradients. Adv Space Res 39(8):1292–1297. doi:10.1016/j.asr.2007.01.041

    Article  Google Scholar 

  • Niranjan K, Srivani B, Gopikrishna S, Rama Rao PVS (2007) Spatial distribution of ionization in the equatorial and low-latitude ionosphere of the Indian sector and its effect on the pierce point altitude for GPS applications during low solar activity periods. J Geophys Res 112(A5): doi:10.1029/2006ja011989

  • Okoh D, Owolabi O, Ekechukwu C, Folarin O, Arhiwo G, Agbo J, Bolaji S, Rabiu B (2016) A regional GNSS-VTEC model over Nigeria using neural networks: a novel approach. Geod Geodyn 7(1):19–31

    Article  Google Scholar 

  • Rao PR, Niranjan K, Prasad D, Krishna SG, Uma G (2006) On the validity of the ionospheric pierce point (IPP) altitude of 350 km in the Indian equatorial and low-latitude sector. Ann Geophys 24:2159–2168

    Article  Google Scholar 

  • Santos MC, van der Bree R, van der Marel H, Verhagen S, Garcia CA (2010) Experimental assessment of a PPP-based P2–C2 bias estimation. In: satellite navigation technologies and European workshop on GNSS signals and signal processing (NAVITEC), 2010 5th ESA Workshop on. IEEE, pp 1–4

  • Sardón E, Zarraoa N (1997) Estimation of total electron content using GPS data: how stable are the differential satellite and receiver instrumental biases? Radio Sci 32(5):1899–1910

    Article  Google Scholar 

  • Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the Global Positioning System. Geod -Geophys Arb Schweiz 59

  • Schaer S, Gurtner W, Feltens J (1998) IONEX: the ionosphere map exchange format version 1. In: Proceedings of the IGS AC workshop, Darmstadt, Germany

  • Shi C, Gu S, Lou Y, Ge M (2012) An improved approach to model ionospheric delays for single-frequency precise point positioning. Adv Space Res 49(12):1698–1708

    Article  Google Scholar 

  • Wang N (2016) Study on GNSS differential code biases and global broadcast ionospheric models of GPS, Galileo and BDS. Chinese Academy of Sciences. Wuhan.

  • Wang N, Yuan Y, Li Z, Montenbruck O, Tan B (2016a) Determination of differential code biases with multi-GNSS observations. J Geod 90(3):209–228

    Article  Google Scholar 

  • Wang X-L, Wan Q-T, Ma G-Y, Li J-H, Fan J-T (2016b) The influence of ionospheric thin shell height on TEC retrieval from GPS observation. Res Astron Astrophys 16(7):016

    Article  Google Scholar 

  • Wang N, Yuan Y, Li Z, Li Y, Huo X, Li M (2017) An examination of the Galileo NeQuick model: comparison with GPS and JASON TEC. GPS Solut 21(2):605–615

    Article  Google Scholar 

  • Wilson B, Mannucci AJ (1993) Instrumental biases in ionospheric measurements derived from GPS data. In: Jet Propulsion Laboratory, California Institute of Technology, Pasadenas

  • Yuan YB, Ou JK (1999) The effects of instrumental bias in GPS observations on determining ionospheric delays and the methods of its calibration. Acta Geod Cartogr Sin 38:110–114

    Google Scholar 

  • Yuan Y, Ou J (2001) An improvement to ionospheric delay correction for single-frequency GPS users-the APR-I scheme. J Geod 75(5–6):331–336

    Article  Google Scholar 

  • Yuan YB, Ou JK (2004) A generalized trigonometric series function model for determining ionospheric delay. Prog Nat Sci 14(11):1010–1014. doi:10.1080/10020070412331344711

    Article  Google Scholar 

  • Yuan YB, Huo XL, Ou JK (2007) Models and methods for precise determination of ionospheric delay using GPS. Prog Nat Sci 17(2):187–196

    Article  Google Scholar 

  • Yuan Y, Tscherning CC, Knudsen P, Xu G, Ou J (2008) The ionospheric eclipse factor method (IEFM) and its application to determining the ionospheric delay for GPS. J Geod 82(1):1–8. doi:10.1007/s00190-007-0152-2

    Article  Google Scholar 

  • Yuan Y, Li Z, Wang N, Zhang B, Li H, Li M, Huo X, Ou J (2015) Monitoring the ionosphere based on the Crustal Movement Observation Network of China. Geod Geodyn 6(2):73–80. doi:10.1016/j.geog.2015.01.004

    Article  Google Scholar 

  • Zhang BC, Ou JK, Yuan YB, Li ZS (2012) Extraction of line-of-sight ionospheric observables from GPS data using precise point positioning. Sci China Earth Sci 55(11):1919–1928. doi:10.1007/s11430-012-4454-8

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the use of data from the Chinese Meridian Project. We also acknowledge the IGS and Crustal Movement Observation Network of China (CMONOC) for providing access to GNSS data. This work was supported by the National Key Research Program of China “Collaborative Precision Positioning Project” (No.2016YFB0501900), China Natural Science Funds (No. 41231064, 41674022, 41604031, 41574015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Li or Yunbin Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Yuan, Y., Zhang, B. et al. Determination of the optimized single-layer ionospheric height for electron content measurements over China. J Geod 92, 169–183 (2018). https://doi.org/10.1007/s00190-017-1054-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-017-1054-6

Keywords

Navigation