Advertisement

Journal of Geodesy

, Volume 92, Issue 2, pp 169–183 | Cite as

Determination of the optimized single-layer ionospheric height for electron content measurements over China

Original Article

Abstract

The ionosphere effective height (IEH) is a very important parameter in total electron content (TEC) measurements under the widely used single-layer model assumption. To overcome the requirement of a large amount of simultaneous vertical and slant ionospheric observations or dense “coinciding” pierce points data, a new approach comparing the converted vertical TEC (VTEC) value using mapping function based on a given IEH with the “ground truth” VTEC value provided by the combined International GNSS Service Global Ionospheric Maps is proposed for the determination of the optimal IEH. The optimal IEH in the Chinese region is determined using three different methods based on GNSS data. Based on the ionosonde data from three different locations in China, the altitude variation of the peak electron density (hmF2) is found to have clear diurnal, seasonal and latitudinal dependences, and the diurnal variation of hmF2 varies from approximately 210 to 520 km in Hainan. The determination of the optimal IEH employing the inverse method suggested by Birch et al. (Radio Sci 37, 2002. doi: 10.1029/2000rs002601) did not yield a consistent altitude in the Chinese region. Tests of the method minimizing the mapping function errors suggested by Nava et al. (Adv Space Res 39:1292–1297, 2007) indicate that the optimal IEH ranges from 400 to 600 km, and the height of 450 km is the most frequent IEH at both high and low solar activities. It is also confirmed that the IEH of 450–550 km is preferred for the Chinese region instead of the commonly adopted 350–450 km using the determination method of the optimal IEH proposed in this paper.

Keywords

Global navigation satellite system (GNSS) Ionospheric total electron content (TEC) Mapping function Single-layer model (SLM) Global ionospheric map (GIM) Ionosphere effective height (IEH) 

Notes

Acknowledgements

We would like to acknowledge the use of data from the Chinese Meridian Project. We also acknowledge the IGS and Crustal Movement Observation Network of China (CMONOC) for providing access to GNSS data. This work was supported by the National Key Research Program of China “Collaborative Precision Positioning Project” (No.2016YFB0501900), China Natural Science Funds (No. 41231064, 41674022, 41604031, 41574015).

References

  1. Arikan F, Shukurov S, Tuna H, Arikan O, Gulyaeva T (2016) Performance of GPS slant total electron content and IRI-Plas-STEC for days with ionospheric disturbance. Geod Geodyn 7(1):1–10CrossRefGoogle Scholar
  2. Birch MJ, Hargreaves JK, Bailey GJ (2002) On the use of an effective ionospheric height in electron content measurement by GPS reception. Radio Sci 37(1): doi: 10.1029/2000rs002601
  3. Blanch J, Walter T, Enge P (2004) A new ionospheric estimation algorithm for SBAS combining kriging and tomography. In: Proceedings of the institute of navigation national technical meetingGoogle Scholar
  4. Breed AM, Goodwin GL, Vandenberg AM, Essex EA, Lynn KJW, Silby JH (1997) Ionospheric total electron content and slab thickness determined in Australia. Radio Sci 32(4):1635–1643. doi: 10.1029/97rs00454 CrossRefGoogle Scholar
  5. Brunini C, Azpilicueta F (2010) GPS slant total electron content accuracy using the single layer model under different geomagnetic regions and ionospheric conditions. J Geod 84(5):293–304. doi: 10.1007/s00190-010-0367-5 CrossRefGoogle Scholar
  6. Brunini C, Meza A, Bosch W (2005) Temporal and spatial variability of the bias between TOPEX- and GPS-derived total electron content. J Geod 79(4–5):175–188CrossRefGoogle Scholar
  7. Brunini C, Camilion E, Azpilicueta F (2011) Simulation study of the influence of the ionospheric layer height in the thin layer ionospheric model. J Geod 85(9):637–645. doi: 10.1007/s00190-011-0470-2 CrossRefGoogle Scholar
  8. Brunini C, Van Zele MA, Meza A, Gende M (2003) Quiet and perturbed ionospheric representation according to the electron content from GPS signals. J Geophys Res Space 108(A2): doi: 10.1029/2002ja009346
  9. Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella S (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81(2):111–120CrossRefGoogle Scholar
  10. Conte JF, Azpilicueta F, Brunini C (2011) Accuracy assessment of the GPS-TEC calibration constants by means of a simulation technique. J Geod 85(10):707–714. doi: 10.1007/s00190-011-0477-8 CrossRefGoogle Scholar
  11. Davies K, Hartmann GK (1997) Studying the ionosphere with the Global Positioning System. Radio Sci 32(4):1695–1703. doi: 10.1029/97rs00451 CrossRefGoogle Scholar
  12. Hernández-Pajares M (2004) IGS ionosphere WG status report: performance of IGS ionosphere TEC maps-position paper. In: IGS Workshop, BernGoogle Scholar
  13. Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3–4):263–275. doi: 10.1007/s00190-008-0266-1 CrossRefGoogle Scholar
  14. Hernandez-Pajares M, Juan JM, Sanz J, Aragon-Angel A, Garcia-Rigo A, Salazar D, Escudero M (2011) The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques. J Geod 85(12):887–907. doi: 10.1007/s00190-011-0508-5 CrossRefGoogle Scholar
  15. Hernández-Pajares M, Roma-Dollase D, Krankowski A, García-Rigo A, Orús-Pérez R (2017) Methodology and consistency of slant and vertical assessments for ionospheric electron content models. J Geod. doi: 10.1007/s00190-017-1032-z Google Scholar
  16. Huang Z, Yuan H (2013) Analysis and improvement of ionospheric thin shell model used in SBAS for China region. Adv Space Res 51(11):2035–2042. doi: 10.1016/j.asr.2012.12.018 CrossRefGoogle Scholar
  17. Hu L, Ning B, Liu L, Zhao B, Li G, Wu B, Huang Z, Hao X, Chang S, Wu Z (2014) Validation of COSMIC ionospheric peak parameters by the measurements of an ionosonde chain in China. Ann Geophys 32(10):1311–1319CrossRefGoogle Scholar
  18. Klobuchar JA (1987) Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans Aerosp Electron Syst 23(3):325–331. doi: 10.1109/taes.1987.310829 CrossRefGoogle Scholar
  19. Komjathy A (1997) Global ionospheric total electron content mapping using the global positioning system, University of New BrunswickGoogle Scholar
  20. Komjathy A, Langley R (1996) An assessment of predicted and measured ionospheric total electron content using a regional GPS network. In: Proceedings of the national technical meeting of the Institute of Navigation, pp. 615–624Google Scholar
  21. Komjathy A, Sparks L, Mannucci A, Pi X (2003) An alternative ionospheric correction algorithm for satellite-based augmentation systems in low-latitude region. In: On the CD-ROM of the proceedings of GNSS 2003 the European navigation conference, GrazGoogle Scholar
  22. Krankowski A, Shagimuratov II, Ephishov II, Krypiak-Gregorczyk A, Yakimova G (2009) The occurrence of the mid-latitude ionospheric trough in GPS-TEC measurements. Adv Space Res 43(11):1721–1731. doi: 10.1016/j.asr.2008.05.014 CrossRefGoogle Scholar
  23. Lanyi GE, Roth T (1988) A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations. Radio Sci 23(4):483–492CrossRefGoogle Scholar
  24. Li Z, Yuan Y, Wang N, Hernandez-Pajares M, Huo X (2015) SHPTS: towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. J Geod 89(4):331–345CrossRefGoogle Scholar
  25. Li M, Yuan Y, Wang N, Li Z, Li Y, Huo X (2017) Estimation and analysis of Galileo differential code biases. J Geod 91:279. doi: 10.1007/s00190-016-0962-1 CrossRefGoogle Scholar
  26. Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3):565–582. doi: 10.1029/97rs02707 CrossRefGoogle Scholar
  27. Nava B, Radicella SM, Leitinger R, Coïsson P (2007) Use of total electron content data to analyze ionosphere electron density gradients. Adv Space Res 39(8):1292–1297. doi: 10.1016/j.asr.2007.01.041 CrossRefGoogle Scholar
  28. Niranjan K, Srivani B, Gopikrishna S, Rama Rao PVS (2007) Spatial distribution of ionization in the equatorial and low-latitude ionosphere of the Indian sector and its effect on the pierce point altitude for GPS applications during low solar activity periods. J Geophys Res 112(A5): doi: 10.1029/2006ja011989
  29. Okoh D, Owolabi O, Ekechukwu C, Folarin O, Arhiwo G, Agbo J, Bolaji S, Rabiu B (2016) A regional GNSS-VTEC model over Nigeria using neural networks: a novel approach. Geod Geodyn 7(1):19–31CrossRefGoogle Scholar
  30. Rao PR, Niranjan K, Prasad D, Krishna SG, Uma G (2006) On the validity of the ionospheric pierce point (IPP) altitude of 350 km in the Indian equatorial and low-latitude sector. Ann Geophys 24:2159–2168CrossRefGoogle Scholar
  31. Santos MC, van der Bree R, van der Marel H, Verhagen S, Garcia CA (2010) Experimental assessment of a PPP-based P2–C2 bias estimation. In: satellite navigation technologies and European workshop on GNSS signals and signal processing (NAVITEC), 2010 5th ESA Workshop on. IEEE, pp 1–4Google Scholar
  32. Sardón E, Zarraoa N (1997) Estimation of total electron content using GPS data: how stable are the differential satellite and receiver instrumental biases? Radio Sci 32(5):1899–1910CrossRefGoogle Scholar
  33. Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the Global Positioning System. Geod -Geophys Arb Schweiz 59Google Scholar
  34. Schaer S, Gurtner W, Feltens J (1998) IONEX: the ionosphere map exchange format version 1. In: Proceedings of the IGS AC workshop, Darmstadt, GermanyGoogle Scholar
  35. Shi C, Gu S, Lou Y, Ge M (2012) An improved approach to model ionospheric delays for single-frequency precise point positioning. Adv Space Res 49(12):1698–1708CrossRefGoogle Scholar
  36. Wang N (2016) Study on GNSS differential code biases and global broadcast ionospheric models of GPS, Galileo and BDS. Chinese Academy of Sciences. Wuhan.Google Scholar
  37. Wang N, Yuan Y, Li Z, Montenbruck O, Tan B (2016a) Determination of differential code biases with multi-GNSS observations. J Geod 90(3):209–228CrossRefGoogle Scholar
  38. Wang X-L, Wan Q-T, Ma G-Y, Li J-H, Fan J-T (2016b) The influence of ionospheric thin shell height on TEC retrieval from GPS observation. Res Astron Astrophys 16(7):016CrossRefGoogle Scholar
  39. Wang N, Yuan Y, Li Z, Li Y, Huo X, Li M (2017) An examination of the Galileo NeQuick model: comparison with GPS and JASON TEC. GPS Solut 21(2):605–615CrossRefGoogle Scholar
  40. Wilson B, Mannucci AJ (1993) Instrumental biases in ionospheric measurements derived from GPS data. In: Jet Propulsion Laboratory, California Institute of Technology, PasadenasGoogle Scholar
  41. Yuan YB, Ou JK (1999) The effects of instrumental bias in GPS observations on determining ionospheric delays and the methods of its calibration. Acta Geod Cartogr Sin 38:110–114Google Scholar
  42. Yuan Y, Ou J (2001) An improvement to ionospheric delay correction for single-frequency GPS users-the APR-I scheme. J Geod 75(5–6):331–336CrossRefGoogle Scholar
  43. Yuan YB, Ou JK (2004) A generalized trigonometric series function model for determining ionospheric delay. Prog Nat Sci 14(11):1010–1014. doi: 10.1080/10020070412331344711 CrossRefGoogle Scholar
  44. Yuan YB, Huo XL, Ou JK (2007) Models and methods for precise determination of ionospheric delay using GPS. Prog Nat Sci 17(2):187–196CrossRefGoogle Scholar
  45. Yuan Y, Tscherning CC, Knudsen P, Xu G, Ou J (2008) The ionospheric eclipse factor method (IEFM) and its application to determining the ionospheric delay for GPS. J Geod 82(1):1–8. doi: 10.1007/s00190-007-0152-2 CrossRefGoogle Scholar
  46. Yuan Y, Li Z, Wang N, Zhang B, Li H, Li M, Huo X, Ou J (2015) Monitoring the ionosphere based on the Crustal Movement Observation Network of China. Geod Geodyn 6(2):73–80. doi: 10.1016/j.geog.2015.01.004 CrossRefGoogle Scholar
  47. Zhang BC, Ou JK, Yuan YB, Li ZS (2012) Extraction of line-of-sight ionospheric observables from GPS data using precise point positioning. Sci China Earth Sci 55(11):1919–1928. doi: 10.1007/s11430-012-4454-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Geodesy and Earth’s DynamicsInstitute of Geodesy and GeophysicsWuhanChina
  2. 2.Academy of Opto-ElectronicsChinese Academy of SciencesBeijingChina
  3. 3.Henan Polytechnic UniversityJiaozuoChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations