Skip to main content
Log in

Data mining in resistance spot welding

A non-destructive method to predict the welding spot diameter by monitoring process parameters

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Resistance spot welding is the dominant process in the present mass production of steel constructions without sealing requirements with single sheet thicknesses up to 3 mm. Two of the main applications of resistance spot welding are the automobile and the railway vehicle manufacturing industry. The majority of these connections has safety-related character and therefore they must not fall below a certain weld diameter. Since resistance spot welding has been established, this weld diameter has been usually used as the gold standard. Despite intensive efforts, there has not been found yet a reliable method to detect this connection quality non-destructively. Considerable amounts of money and steel sheets are wasted on making sure that the process does not result in faulty joints. The indication of the weld diameter by in-process monitoring in a reliable way would allow the quality documentation of joints during the welding process and additionally lead through demand-actuated milling cycles to a substantial decrease of electrode consumption. An annual, estimated reduction in the seven- to nine-figure range could be achieved. It has an important impact, because the economics of the process is essentially characterized by the electrode caps (Klages 24). We propose a simple and straightforward approach using data mining techniques to accurately predict the weld diameter from recorded data during the welding process. In this paper, we describe the methods used during data preprocessing and segmentation, feature extraction and selection, and model creation and validation. We achieve promising results during an analysis of more than 3000 classified welds using a model tree as a predictor with a success rate of 93 %. In the future, we hope to validate our model with unseen welding data and implement it in a real world application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afshari D, Sedighi M, Karimi MR, Barsoum Z (2014) Prediction of the nugget size in resistance spot welding with a combination of a finite-element analysis and an artificial neural network. Mater Technol 48(1):33–38. ISSN 1580–2949

    Google Scholar 

  2. Arndt B, Hoffmann B (2013) Segmentierung und Merkmalsdefinition mehrkanaliger Messdaten zur Prognose bei einem punktförmigen Fügeverfahren. In: Fischer A, Oesterreich M, Scheidat T (eds) 14. Nachwuchswissenschaftlerkonferenz ost- und mitteldeutscher Fachhochschulen NWK 14, Verlag Werner Hülsbusch

    Google Scholar 

  3. Boersch I, Heinsohn J, Socher R (2007) Wissensverarbeitung - Eine Einführung in die Künstliche Intelligenz für Informatiker und Ingenieure, 2nd edn. Spektrum Akademischer Verlag

  4. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  5. D8.1M:2007 (2007) Specification for automotive weld quality resistance spot welding of steel. ISBN 978-0-87171-065-9

  6. Das M, Strausbaugh J, Fernandez V, Grzadzinski G (2007) Method for estimating nugget diameter and weld parameters http://www.google.de/patents/US7244905, US Patent 7,244,905

  7. DVS 2902-3 (2015) Widerstandspunktschweißen von Stählen bis 3 mm Einzeldicke - Konstruktion und Berechnung

  8. EN 10346 (2009) Continuously hot-dip coated steel flat products - technical delivery conditions

  9. Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI Mag 17(3):37– 54

    Google Scholar 

  10. Garza F, Das M (2001) On real time monitoring and control of resistance spot welds using dynamic resistance signatures. In: Proceedings of the 44th IEEE 2001 midwest symposium on circuits and systems. MWSCAS 2001, vol 1. IEEE, pp 41–44

  11. Großmann C, Füssel U, Mathiszik C, Zschetzsche J (2014) Resistance spot welding – quality assurance and new testing methods. In: Tailored joining 2014 - proceedings of the international symposium tailored joining, Fraunhofer IWS Dresden & Technische Universität Dresden, vol 2, pp J11, 1–14

  12. Haapalainen E, Laurinen P, Junno H, Tuovinen L, Röning J (2005) Methods for classifying spot welding processes: A comparative study of performance. In: The 18th international conference on industrial & engineering applications of artificial intelligence & expert systems

  13. Haapalainen E, Koskimäki H, Laurinen P, Röning J, Tuovinen L (2007) Building a database to support intelligent computational quality assurance of resistance spot welding joints. Tech. rep., University of Oulu, Department of Computer Science and Engineering, Intelligent Systems Group

  14. Haapalainen E, Laurinen P, Junno H, Tuovinen L, Röning J (2008) Feature selection for identification of spot welding processes. In: Cetto J, Ferrier JL, Costa dias Pereira JM, Filipe J (eds) Informatics in control automation and robotics, lecture notes electrical engineering, vol 15. Springer Berlin Heidelberg, pp 69– 79

  15. Hoffmann B, Mögelin J, Arndt B, Mosters C (2014) Data Mining beim Widerstandspunktschweißen: Vorgehensweise und erste Ergebnisse der Prognose von Punktdurchmessern. In: Gesellschaft für Informatik (ed) Lecture Notes in Informatics (LNI) Seminars 13 / Informatiktage 2014, pp 105–108

  16. Holmes G, Hall M, Frank E (1999) Generating rule sets from model trees. In: Proceedings of the 12th Australian joint conference on artificial intelligence. Springer-Verlag, pp 1–12

  17. ISO 14327 (2004) Resistance welding - procedures for determining the weldability lobe for resistance spot, projection and seam welding

  18. ISO 14373 (2015) Resistance welding - procedure for spot welding of uncoated and coated low carbon steels

  19. ISO 17677-1 (2009) Resistance welding - vocabulary - part 1: Spot, projection and seam welding

  20. ISO 18278-1 (2015) Resistance welding - weldability - part 1: General requirements for the evaluation of weldability for resistance spot, seam and projection welding of metallic materials

  21. ISO 18278-2 (2014) Resistance welding - weldability - part 2: Evaluation procedures for weldability in spot welding

  22. ISO 8166 (2003) Resistance welding - procedure for the evaluation of the life of spot welding electrodes using constant machine settings

  23. Jonata M, Neumann H (2008) Share of spot welding and other joining methods in automotive production. Weld World 52(3–4):12–16

    Article  Google Scholar 

  24. Klages EC (2014) Beurteilung der Beanspruchung von Elektrodenkappen beim Widerstandspunktschweißen von höher- und höchstfestem Stahl. Dissertation, Technische Universität Clausthal, ISBN-13: 978-3-8325-3868-2

  25. Laurinen P, Junno H, Tuovinen L, Röning J (2004a) Studying the quality of resistance spot welding joints using self-organising maps. In: 4th international ICSC symposium on engineering of intelligent systems (EIS), pp 705–711

  26. Laurinen P, Junno H, Tuovinen L, Röning J (2004b) Studying the quality of resistance spot welding joints using bayesian networks. In: Proceedings of artificial intelligence and applications, pp 705–711

  27. Li J, Tao F, Cheng Y, Zhao L (2015) Big data in product lifecycle management. Int J Adv Manuf Technol 81(1):667–684

    Article  Google Scholar 

  28. Mathiszik C, Großmann C, Zschetzsche J, Füssel U (2016) Zerstörungsfreie Bewertung des Linsendurchmessers beim Widerstandspunktschweißen mit magnetischen Prüfverfahren. Schweissen und Schneiden 68(1/2)

  29. Mögelin J, Mosters C (2013) Merkmalsselektion und transparente Modellierung zur Prognose einer Zielgröße bei einem punktförmigen Fügeverfahren. In: Fischer A, Oesterreich M, Scheidat T (eds) 14. Nachwuchswissenschaftlerkonferenz ost- und mitteldeutscher Fachhochschulen NWK 14 (18.04.2013), Verlag Werner Hülsbusch

    Google Scholar 

  30. Muhammad N, Manurung YH (2012) Design parameters selection and optimization of weld zone development in resistance spot welding. World Acad Sci Eng Technol 6(11):1184–1189. ISSN 1307–6892

    Google Scholar 

  31. National Instruments (2015) TDMS File Format Internal Structure., http://www.ni.com/white-paper/5696/en/, accessed: 2015-10-01

  32. OICA (2015) 2014 Production Statistics., http://www.oica.net/category/production-statistics/, accessed: 2015-02-01

  33. Park Y, Cho H (2004) Quality evaluation by classification of electrode force patterns in the resistance spot welding process using neural networks. Proc Inst Mech Eng B J Eng Manuf 218(11):1513–1524

    Article  Google Scholar 

  34. Quinlan JR (1992) Learning with continuous classes. In: Proceedings of the Australian joint conference on artificial intelligence. World Scientific, Singapore, pp 343–348

  35. Rivas S, Servent R, Belda J (2004) Automated spot welding in the automotive industry. In: 16th World Conference on NDT, NDT.net. Bad Breisig, Germany

  36. Ruisz J, Biber J, Loipetsberger M (2007) Quality evaluation in resistance spot welding by analysing the weld fingerprint on metal bands by computer vision. Int J Adv Manuf Technol 33(9–10):952–960

    Article  Google Scholar 

  37. Schlichting J (2012) Integrale Verfahren der aktiven Infrarotthermografie. Dissertation, Technische Universität Berlin

  38. Tao F, Zhang L, Venkatesh VC, Luo Y, Cheng Y (2011) Cloud manufacturing: a computing and service-oriented manufacturing model. Proc Inst Mech Eng B J Eng Manuf 225(10):1969–1976. http://pib.sagepub.com/content/225/10/1969.full.pdf+html

    Article  Google Scholar 

  39. Tao F, Cheng Y, Zhang L, Nee AYC (2015) Advanced manufacturing systems: socialization characteristics and trends. J Intell Manuf 1–16

  40. Voigt A (2015) Entwicklung eines stoffschlüssigen Fügeverfahrens zum Fügen eines Stahl-Kunststoff-Verbundbleches mit höchstfesten Stahl. Dissertation, Technische Universität Dresden, Fakultät Maschinenwesen. ISBN-13: 978-3959080071

  41. Wan X, Wang Y, Zhao D (2016) Quality monitoring based on dynamic resistance and principal component analysis in small scale resistance spot welding process. Int J Adv Manuf Technol 86(9):3443–3451

    Article  Google Scholar 

  42. Wang Y, Witten IH (1997) Inducing model trees for continuous classes. In: Proceedings of the 9th European conference on machine learning poster papers, pp 128–137

  43. Witkin AP (1983) Scale-space filtering. In: Proceedings of the 8th international joint conference on artificial intelligence, IJCAI’83, vol 2. Morgan Kaufmann Publishers Inc., San Francisco, pp 1019–1022

  44. Yongyan L, Weimin Z, Haitao X, Jian D (2012) Defect recognition of resistance spot welding based on artificial neural network. In: Wu Y (ed) Software engineering and knowledge engineering: theory and practice, vol 2. Springer Berlin Heidelberg, pp 423– 430

    Google Scholar 

  45. Yu J (2015) Quality estimation of resistance spot weld based on logistic regression analysis of welding power signal. Int J Precis Eng Manuf 16(13):2655–2663

    Article  Google Scholar 

  46. Zhang H, Hou Y, Zhang J, Qi X, Wang F (2015) A new method for nondestructive quality evaluation of the resistance spot welding based on the radar chart method and the decision tree classifier. Int J Adv Manuf Technol 78(5):841–851

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Großmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boersch, I., Füssel, U., Gresch, C. et al. Data mining in resistance spot welding. Int J Adv Manuf Technol 99, 1085–1099 (2018). https://doi.org/10.1007/s00170-016-9847-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9847-y

Keywords

Navigation