Skip to main content
Log in

Topology optimization of three-phase interpolation models in Darcy-stokes flow

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper extends the topology optimization (TO) methods of fluid flows to design the three-phase (i.e. solid, fluid and porous materials) interpolation scheme. In addition to numerous studies about the optimized layout of regions governed by Darcy-Stokes equations, this paper aims to minimize the pressure attenuation in multiple phase interpolation models. The optimized distribution is obtained by considering both the fluid permeability through the porous media and impenetrable inner walls (solid phase) and neglecting buoyancy and other external body forces. Each material phase is assigned with two design variables that are projected into the element space via the regularized interpolation functions. The solid isotropic material with penalization (SIMP) interpolation functions, which is initially developed for minimizing compliance of multiple structural materials, is applied to TO processes of Darcy–Stokes flow. The fields are divided into the design and non-design domains, and TO layouts are assembled to satisfy the given performance functions. The smoothed Heaviside projection filter and Helmholtz-type Partial Differential Equation (PDE) based filter are utilized to produce discrete solutions in the continuum TO processes. Numerical studies are carried out to verify the proposed interpolation scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alexandersen J, Lazarov BS (2015) Topology optimisation of manufacturable microstructural details without length scale separation using a spectral coarse basis preconditioner. Comput Methods Appl Mech Eng 290:156–182. https://doi.org/10.1016/j.cma.2015.02.028

    Article  MathSciNet  Google Scholar 

  • Andkjær J, Sigmund O (2013) Topology optimized cloak for airborne sound. J Vib Acoust 135(4):041011

    Article  Google Scholar 

  • Andreasen CS, Sigmund O (2013) Topology optimization of fluid–structure-interaction problems in poroelasticity. Comput Methods Appl Mech Eng 258:55–62

    Article  MathSciNet  MATH  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50:2143–2158

    Article  MathSciNet  MATH  Google Scholar 

  • Bathe KJ, Zhang H (2004) Finite element developments for general fluid flows with structural interactions. Int J Numer Methods Eng 60(1):213–232

    Article  MATH  Google Scholar 

  • Betchen L, Straatman AG, Thompson BE (2006) A nonequilibrium finite-volume model for conjugate fluid/porous/solid domains. Numerical Heat Transfer, Part A: Applications 49(6):543–565

    Article  Google Scholar 

  • Borrvall T, Petersson J (2003) Topology optimization of fluid in stokes flow. Int J Numer Methods Fluids 41(1):77–107

    Article  MathSciNet  MATH  Google Scholar 

  • Cadman JE et al (2012) On design of multi-functional microstructural materials. J Mater Sci 48(1):51–66

    Article  MathSciNet  Google Scholar 

  • Cameron CJ et al (2014) On the balancing of structural and acoustic performance of a sandwich panel based on topology, property, and size optimization. J Sound Vib 333(13):2677–2698

    Article  Google Scholar 

  • Costa VAF, Oliveira LA, Baliga BR, Sousa ACM (2004) Simulation of coupled flows in adjacent porous and open domains using a controle-volume finite-element method. Numerical Heat Transfer, Part A: Applications 45(7):675–697

    Article  Google Scholar 

  • Challis VJ, Guest JK (2009) Level set topology optimization of fluids in stokes flow. Int J Numer Methods Eng 79(10):1284–1308

    Article  MathSciNet  MATH  Google Scholar 

  • Chandesris M, Jamet D (2006) Boundary conditions at a planar fluid-porous interface for a Poiseuille flow. Int J Heat Mass Transf 49(13–14):2137–2150

    Article  MATH  Google Scholar 

  • Deaton JD, Grandhi RV (2013) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38

    Article  MathSciNet  Google Scholar 

  • Dedè L et al (2012) Isogeometric analysis for topology optimization with a phase field model. Archives of Computational Methods in Engineering 19(3):427–465

    Article  MathSciNet  MATH  Google Scholar 

  • Deng Y et al (2013) Topology optimization of steady Navier–stokes flow with body force. Comput Methods Appl Mech Eng 255:306–321

    Article  MathSciNet  MATH  Google Scholar 

  • Deng Y et al (2012) Topology optimization of steady and unsteady incompressible Navier–stokes flows driven by body forces. Struct Multidiscip Optim 47(4):555–570

    Article  MathSciNet  MATH  Google Scholar 

  • Deng Y et al (2011) Topology optimization of unsteady incompressible Navier–stokes flows. J Comput Phys 230(17):6688–6708

    Article  MathSciNet  MATH  Google Scholar 

  • Dong H-W et al (2014) Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm. Struct Multidiscip Optim 50(4):593–604

    Article  MathSciNet  Google Scholar 

  • Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331

    Article  Google Scholar 

  • Evgrafov A (2005) The limits of porous materials in the topology optimization of stokes flows. Appl Math Optim 52(3):263–277

    Article  MathSciNet  MATH  Google Scholar 

  • Gersborg-Hansen A et al (2005) Topology optimization of channel flow problems. Struct Multidiscip Optim 30(3):181–192

    Article  MathSciNet  MATH  Google Scholar 

  • Guest JK, Prévost JH (2006a) Optimizing multifunctional materials. Design of microstructures for maximized stiffness and fluid permeability International Journal of Solids and Structures 43(22–23):7028–7047

    Article  MATH  Google Scholar 

  • Guest JK, Prévost JH (2006b) Topology optimization of creeping fluid flows using a Darcy–stokes finite element. Int J Numer Methods Eng 66(3):461–484

    Article  MathSciNet  MATH  Google Scholar 

  • Guest JK, Prévost JH (2007) Design of maximum permeability material structures. Comput Methods Appl Mech Eng 196(4–6):1006–1017

    Article  MathSciNet  MATH  Google Scholar 

  • Kawamoto A et al (2011) Heaviside projection based topology optimization by a PDE-filtered scalar function. Struct Multidiscip Optim 44:19–24. https://doi.org/10.1007/s00158-010-0562-2

    Article  MATH  Google Scholar 

  • Kim KH, Yoon GH (2015) Optimal rigid and porous material distributions for noise barrier by acoustic topology optimization. J Sound Vib 339:123–142

    Article  Google Scholar 

  • Kreissl S et al (2011) Topology optimization for unsteady flow. Int J Numer Methods Eng 87:1229–1253

    MathSciNet  MATH  Google Scholar 

  • Lazarov BS, Sigmund O (2011) Filters in topology optimization based on Helmholtz-type differential equations. Int J Numer Methods Eng 86:765–781. https://doi.org/10.1002/nme.3072

    Article  MathSciNet  MATH  Google Scholar 

  • Lazarov BS et al (2016) Length scale and manufacturability in density-based topology optimization. Arch Appl Mech 86:189–218. https://doi.org/10.1007/s00419-015-1106-4

    Article  Google Scholar 

  • Lee JS et al (2015) Topology optimization for three-phase materials distribution in a dissipative expansion chamber by unified multiphase modeling approach. Comput Methods Appl Mech Eng 287:191–211

    Article  MathSciNet  Google Scholar 

  • Lee JS et al (2008) Two-dimensional poroelastic acoustical foam shape design for absorption coefficient maximization by topology optimization method. J Acoust Soc Am 123(4):2094–2106

    Article  Google Scholar 

  • Lee JW (2015) Optimal topology of reactive muffler achieving target transmission loss values: design and experiment. Appl Acoust 88:104–113

    Article  Google Scholar 

  • Lee JW, Kim YY (2009) Topology optimization of muffler internal partitions for improving acoustical attenuation performance. Int J Numer Methods Eng 80(4):455–477

    Article  MATH  Google Scholar 

  • Lin S et al (2015) Topology optimization of fixed-geometry fluid diodes. J Mech Des 137(8):081402

    Article  Google Scholar 

  • Liu Z et al (2012) Optimization of micro Venturi diode in steady flow at low Reynolds number. Eng Optim 44(11):1389–1404

    Article  Google Scholar 

  • Liu Z et al (2005) Structure topology optimization: fully coupled level set method via FEMLAB. Struct Multidiscip Optim 29(6):407–417

    Article  MathSciNet  MATH  Google Scholar 

  • Marck G et al (2013) Topology optimization of heat and mass transfer problems: laminar flow. Numerical Heat Transfer, Part B: Fundamentals 63(6):508–539

    Article  Google Scholar 

  • Nield DA (2009) The beavers-Joseph boundary condition and related matters: a historical and critical note. Transp Porous Media 78(3):537–540

    Article  MathSciNet  Google Scholar 

  • Olesen LH et al (2006) A high-level programming-language implementation of topology optimization applied to steady-state Navier-stokes flow. Int J Numer Methods Eng 65(7):975–1001

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K (1995) A globally convergent version of MMA without linesearch. In: Rozvany GIN, Olhoff N (eds) Proceedings of the first world congress of structural and multidisciplinary optimization. Pergamon, Goslar, pp 9–16

    Google Scholar 

  • Svanberg K, Svärd H (2013) Density filters for topology optimization based on the Pythagorean means. Struct Multidiscip Optim 48(5):859–875

    Article  MathSciNet  Google Scholar 

  • Wiker N et al (2007) Topology optimization of regions of Darcy and stokes flow. Int J Numer Methods Eng 69(7):1374–1404

    Article  MathSciNet  MATH  Google Scholar 

  • Yoon GH (2010) Topology optimization for stationary fluid-structure interaction problems using a new monolithic formulation. Int J Numer Methods Eng 82(5):591–616

    Article  MATH  Google Scholar 

  • Yoon GH (2013) Acoustic topology optimization of fibrous material with Delany–Bazley empirical material formulation. J Sound Vib 332(5):1172–1187

    Article  Google Scholar 

  • Zhou S, Li Q (2007) The relation of constant mean curvature surfaces to multiphase composites with extremal thermal conductivity. J Phys D Appl Phys 40(19):6083–6093

    Article  Google Scholar 

  • Yamamoto T et al (2009) Topology design of multi-material soundproof structures including poroelastic media to minimize sound pressure levels. Comput Methods Appl Mech Eng 198:1439–1455. https://doi.org/10.1016/j.cma.2008.12.008

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou S, Li Q (2008a) Computational Design of Microstructural Composites with tailored thermal conductivity. Numerical Heat Transfer, Part A: Applications 54(7):686–708

    Article  Google Scholar 

  • Zhou S, Li Q (2008b) Computational design of multi-phase microstructural materials for extremal conductivity. Comput Mater Sci 43(3):549–564

    Article  Google Scholar 

  • Zhou S, Li Q (2008c) A variational level set method for the topology optimization of steady-state Navier–stokes flow. J Comput Phys 227(24):10178–10195

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by “Collaborative Innovation Center of High-End Equipment Manufacturing in Fujian”. The authors also would like to thank Professor Gil Hoo Yoon for valuable suggestions during the preparation of the work. In addition, we would like to thank the anonymous reviewers who have helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Hou.

Adjoint sensitivity of the optimization problem

Adjoint sensitivity of the optimization problem

The discretized objective function can be augmented with a Lagrange adjoint multiplier λ T

$$ \partial \overline{J}\left(\mathbf{u},\boldsymbol{\upchi} \right)=J\left(\mathbf{u},\boldsymbol{\upchi} \right)-{\boldsymbol{\uplambda}}^T\mathbf{R}\left(\mathbf{u},\boldsymbol{\upchi} \right) $$
(25)

where R(u, χ) is the residual form of the discretized Navier-Stokes. Equation (25) can be solved interatively by invoking the Newton-Raphson method. The sensitivity expression is obtained by differentiating the discretized objective function with respect to each component of the design variable vector χ

$$ \frac{\mathrm{d}\overline {J}\left(\mathbf{u},\boldsymbol{\upchi} \right)}{\mathrm{d}\boldsymbol{\upchi }}=\frac{\partial J\left(\mathbf{u},\boldsymbol{\upchi} \right)}{\partial \mathbf{u}}\frac{\partial \mathbf{u}}{\partial \boldsymbol{\upchi}}+\frac{\partial J\left(\mathbf{u},\boldsymbol{\upchi} \right)}{\partial \boldsymbol{\upchi}}-{\boldsymbol{\uplambda}}^T\left[\frac{\partial \mathbf{R}\left(\mathbf{u},\boldsymbol{\upchi} \right)}{\partial \mathbf{u}}\frac{\partial \mathbf{u}}{\partial \boldsymbol{\upchi}}+\frac{\partial \mathbf{R}\left(\mathbf{u},\boldsymbol{\upchi} \right)}{\partial \boldsymbol{\upchi}}\right] $$
(26)

To isolate the implicit response sensitivities, the above (26) can be separated into explicit and implicit terms. It can be rearranged as

(27)

The unknown implicit response sensitivity ∂u/∂χ, is eliminated from the above equation by defining the Lagrange multiplier λ. Annihilation of the implicit term yields the following adjoint problem for a specialized parameter vector λ.

$$ \frac{\partial J\left(\mathbf{u},\boldsymbol{\upchi} \right)}{\partial \mathbf{u}}-{\boldsymbol{\uplambda}}^T\frac{\partial \mathbf{R}\left(\mathbf{u},\boldsymbol{\upchi} \right)}{\partial \mathbf{u}}=0 $$
(28)

where \( \partial \overline{J}\left(\mathbf{u},\boldsymbol{\upchi} \right)/\partial \mathbf{u} \) is the adjoint load. Substituting (28) in to (27), the sensitivities become

$$ \frac{\partial \overline{J}\left(\mathbf{u},\boldsymbol{\upchi} \right)}{\partial \boldsymbol{\upchi}}=\frac{\partial J\left(\mathbf{u},\boldsymbol{\upchi} \right)}{\partial \boldsymbol{\upchi}}-{\boldsymbol{\uplambda}}^T\frac{\partial \mathbf{R}\left(\mathbf{u},\boldsymbol{\upchi} \right)}{\partial \boldsymbol{\upchi}} $$
(29)

For a sensitivity analysis of the optimization model in (20), the adjoint sensitivity of the pressure drop between the inlet and outlet boundaries can be obtained as:

$$ {\displaystyle \begin{array}{l}\frac{\partial \varDelta p}{\partial \boldsymbol{\upchi}}=\frac{1}{\int_{\varGamma_{in}}1\mathrm{d}s}\bullet \left(\frac{\partial {\int}_{\varGamma_{in}}p\mathbf{n}\bullet \mathrm{d}\mathbf{s}}{\partial \boldsymbol{\upchi}}-{{\boldsymbol{\uplambda}}_{in}}^T\frac{\partial {\mathbf{R}}_{\varGamma_{in}}\left(\mathbf{u},\boldsymbol{\upchi} \right)}{\partial \boldsymbol{\upchi}}\right)\\ {}-\frac{1}{\int_{\varGamma_{out}}1\mathrm{d}s}\bullet \left(\frac{\partial {\int}_{\varGamma_{out}}p\mathbf{n}\bullet \mathrm{d}\mathbf{s}}{\partial \boldsymbol{\upchi}}-{{\boldsymbol{\uplambda}}_{out}}^T\frac{\partial {\mathbf{R}}_{\varGamma_{out}}\left(\mathbf{u},\boldsymbol{\upchi} \right)}{\partial \boldsymbol{\upchi}}\right)\end{array}} $$
(30)

where λ in T and λ out T are Lagrange multipliers, and are solved by adjoint (28).

As the fluid channel has the parallel inlet and outlet ports, as well as the same area, it becomes somewhat easy to utilize the pressure drop to evaluate the fluid performance. Then, the description of (30) can be rearranged as:

$$ {\displaystyle \begin{array}{l}\frac{\partial \varDelta p}{\partial \boldsymbol{\upchi}}=\frac{1}{\int_{\varGamma_{in, out}}1\mathrm{d}s}\bullet \left(\frac{\partial {\int}_{\varGamma_{in}}p\mathbf{n}\bullet \mathrm{d}\mathbf{s}}{\partial \boldsymbol{\upchi}}-\frac{\partial {\int}_{\varGamma_{out}}p\mathbf{n}\bullet \mathrm{d}\mathbf{s}}{\partial \boldsymbol{\upchi}}\right)\\ {}-\frac{1}{\int_{\varGamma_{in, out}}1\mathrm{d}s}\bullet \left({{\boldsymbol{\uplambda}}_{in}}^T\frac{\partial {\mathbf{R}}_{\varGamma_{in}}\left(\mathbf{u},\boldsymbol{\upchi} \right)}{\partial \boldsymbol{\upchi}}-{{\boldsymbol{\uplambda}}_{out}}^T\frac{\partial {\mathbf{R}}_{\varGamma_{out}}\left(\mathbf{u},\boldsymbol{\upchi} \right)}{\partial \boldsymbol{\upchi}}\right)\end{array}} $$
(31)

The first term of the right side can be evaluated by the Gauss integral relation, having the following transformation:

$$ {\displaystyle \begin{array}{l}\frac{\partial \varDelta p}{\partial \boldsymbol{\upchi}}=\frac{1}{\int_{\varGamma_{in, out}}1\mathrm{d}s}\bullet \left(\frac{\int_{\varOmega}\nabla \bullet p d\varOmega}{\partial \boldsymbol{\upchi}}\right)\\ {}-\frac{1}{\int_{\varGamma_{in, out}}1\mathrm{d}s}\bullet \left({{\boldsymbol{\uplambda}}_{in}}^T\frac{\partial {\mathbf{R}}_{\varGamma_{in}}\left(\mathbf{u},\boldsymbol{\upchi} \right)}{\partial \boldsymbol{\upchi}}-{{\boldsymbol{\uplambda}}_{out}}^T\frac{\partial {\mathbf{R}}_{\varGamma_{out}}\left(\mathbf{u},\boldsymbol{\upchi} \right)}{\partial \boldsymbol{\upchi}}\right)\end{array}} $$
(32)

in the case where the boundary conditions are symmetrical on all external walls of domain, except for the inlet and outlet. Therefore, the description of pressure drop has been adopted in this work.

At each TO iteration, design variables update according to the values of the objective/constraint functions and their sensitivities to small perturbations of physical design variables. It has been proven that the number of the adjoint functions is small compared to the substantial number of local variations of TO design.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Hou, L., Zhang, E. et al. Topology optimization of three-phase interpolation models in Darcy-stokes flow. Struct Multidisc Optim 57, 1663–1677 (2018). https://doi.org/10.1007/s00158-017-1836-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1836-8

Keywords

Navigation