Skip to main content
Log in

On design-set restriction in SAND topology optimization

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

We study design-set restriction—i.e., the issue of nonexistence of solutions, mesh-dependence, and local minima—in the alternative SAND (‘simultaneous analysis and design’, or ‘direct’) setting of the classical SIMP minimum compliance topology optimization problem. Compared to some predominant filtering techniques, which are typically studied in the conventional NAND setting, so-called ‘slope constraints’—point-wise bounds on the gradient of the material distribution function—necessitate only a reasonable amount of computational resources in the alternative SAND setting. The numerical method is based on a standard finite element procedure and sequential approximate optimization (SAO) method. Numerical experiments with a random multistart strategy and a simple relaxation procedure suggest that ‘probably’ globally optimal 0-1 designs may be obtained in a reasonable amount of computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. The imposition of a minimum length scale.

  2. Nonconvexity; many local minima.

  3. Density filtering methods have also been based on image processing techniques (Sigmund 2007).

  4. To set up the matrix which describes the linear mapping may in fact be nontrivial, computationally speaking, if the FE mesh is not structured in some way.

  5. In 3D, with e z = 100, for example, this number is 3 090 903.

  6. The freely available Matlab codes (Sigmund 2001; Andreassen et al. 2011) may be used to generate these numbers.

  7. In 3D this number is 6.

  8. In 3D, this is \({e_{r}^{3}}-1\).

  9. In 3D, with e z = 100, this number is 2 299 631 832.

  10. In 3D, for an e x × e y × e z = 100 mesh, about 12 × e y × e x × e z additional constraints are required.

  11. In 3D, for e z = 100, about 24 000 000 additional nonzero terms are required—in the equivalent density-filtered case, this number is 2 299 631 832.

  12. In practice so-called ‘convergent’ algorithms are only guaranteed to terminate, perhaps at an infeasible point, particularly if the restoration procedure resorted to fails to produce a feasible iterate. Herein we employ a simple backtracking strategy as a rudimentary restoration procedure. Throughout the feasibility of some point is measured as the infinity norm of all the constraint violations, including the equilibrium constraints, as per the SAND problem (14).

  13. Results in Petersson and Sigmund (1998) suggest that the slope constraints have to be impractically restrictive in order to suppress checkerboards if Q4’s are used.

  14. Here we refer to ‘subproblems’ rather than ‘iterations’, because the convergent trust-region algorithm (Fletcher et al. 2002) involves ‘inner iterations’.

References

  • Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in Matlab using 88 lines of code. Struct Multidiscip Optim 43(1):1–16

    Article  MATH  Google Scholar 

  • Arora JS, Wang Q (2005) Review of formulations for structural and mechanical system optimization. Struct Multidiscip Optim 30(4):251–272

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654

    MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    MATH  Google Scholar 

  • Bendsøe MP, Ben-Tal A, Haftka R (1991) New displacement-based methods for optimal truss topology design. In: 32nd structures, structural dynamics, and materials conference. American Institute of Aeronautics and Astronautics, Baltimore

  • Bolton H, Groenwold A, Snyman J (2004) The application of a unified Bayesian stopping criterion in competing parallel algorithms for global optimization. Comput Math Appl 48(3):549–560

    Article  MathSciNet  MATH  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    Article  MathSciNet  MATH  Google Scholar 

  • Etman LFP, Groenwold AA, Rooda JE (2012) First-order sequential convex programming using approximate diagonal qp subproblems. Struct Multidiscip Optim 45(4):479–488

    Article  MathSciNet  MATH  Google Scholar 

  • Fletcher R, Gould NI, Leyffer S, Toint PL, Wächter A (2002) Global convergence of a trust-region sqp-filter algorithm for general nonlinear programming. SIAM J Optim 13(3):635–659

    Article  MathSciNet  MATH  Google Scholar 

  • Fleury C (1989) Conlin: an efficient dual optimizer based on convex approximation concepts. Struct Optim 1:81–89

    Article  Google Scholar 

  • Fleury C, Braibant V (1986) Structural optimization: a new dual method using mixed variables. Int J Numer Methods Eng 23(3): 409–428

    Article  MathSciNet  MATH  Google Scholar 

  • Groenwold AA, Etman LFP (2008) On the equivalence of optimality criterion and sequential approximate optimization methods in the classical topology layout problem. Int J Numer Methods Eng 73(3):297–316

    Article  MathSciNet  MATH  Google Scholar 

  • Groenwold AA, Etman LFP (2010) A quadratic approximation for structural topology optimization. Int J Numer Methods Eng 82(4):505–524

    MathSciNet  MATH  Google Scholar 

  • Gurobi Optimization Inc. (2015) Gurobi optimizer reference manual. http://www.gurobi.com

  • Haftka RT (1985) Simultaneous analysis and design. AIAA J 23(7):1099–1103

    Article  MathSciNet  MATH  Google Scholar 

  • Haftka R, Kamat M (1989) Simultaneous nonlinear structural analysis and design. Comput Mech 4 (6):409–416

    Article  MATH  Google Scholar 

  • Munro D, Groenwold AA (2016a) Local stress-constrained and slope-constrained SAND topology optimisation. Int J Numer Methods Eng 110(5):420–439. https://doi.org/10.1002/nme.5360

    Article  MathSciNet  MATH  Google Scholar 

  • Munro D, Groenwold AA (2016b) On sequential approximate simultaneous analysis and design in classical topology optimization. Int J Numer Methods Eng 110(3):227–247. https://doi.org/10.1002/nme.5353

    Article  MathSciNet  MATH  Google Scholar 

  • Petersson J (1999) Some convergence results in perimeter-controlled topology optimization. Comput Methods Appl Mech Eng 171(1–2):123–140

    Article  MathSciNet  MATH  Google Scholar 

  • Petersson J, Sigmund O (1998) Slope constrained topology optimization. Int J Numer Methods Eng 41(8):1417–1434

    Article  MathSciNet  MATH  Google Scholar 

  • Rietz A (2001) Sufficiency of a finite exponent in simp (power law) methods. Struct Multidiscip Optim 21(2):159–163

    Article  Google Scholar 

  • Rojas-Labanda S, Stolpe M (2015a) Benchmarking optimization solvers for structural topology optimization. Struct Multidiscip Optim 52 (3):527–547. https://doi.org/10.1007/s00158-015-1250-z

    Article  MathSciNet  Google Scholar 

  • Rojas-Labanda S, Stolpe M (2015b) An efficient second-order SQP method for structural topology optimization. Struct Multidiscip Optim 53(6):1315–1333. https://doi.org/10.1007/s00158-015-1381-2

    Article  MathSciNet  Google Scholar 

  • Rozvany G, Zhou M (1991) Applications of the coc algorithm in layout optimization. In: Engineering optimization in design processes. Springer, pp 59–70

  • Sankaranarayanan S, Haftka RT, Kapania RK (1994) Truss topology optimization with simultaneous analysis and design. AIAA J 32(2):420–424

    Article  Google Scholar 

  • Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21 (2):120–127

    Article  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424

    Article  Google Scholar 

  • Sigmund O, Maute K (2012) Sensitivity filtering from a continuum mechanics perspective. Struct Multidiscip Optim 46(4):471– 475

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75

    Article  Google Scholar 

  • Stolpe M (2010) On some fundamental properties of structural topology optimization problems. Struct Multidiscip Optim 41(5): 661–670

    Article  MATH  Google Scholar 

  • Stolpe M, Svanberg K (2003) A note on stress-constrained truss topology optimization. Struct Multidiscip Optim 25(1):62–64

    Article  MATH  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2): 359–373

    Article  MathSciNet  MATH  Google Scholar 

  • University of Stellenbosch’s Rhasatsha HPC (2017) http://www.sun.ac.za/hpc. Accessed 27 June 2016

  • Wang Q, Arora JS (2007) Optimization of large-scale truss structures using sparse SAND formulations. Int J Numer Methods Eng 69(2):390–407

    Article  MATH  Google Scholar 

  • Zhou M, Fleury R, Shyy YK, Thomas H, Brennan J (2002) Progress in topology optimization with manufacturing constraints. In: Proceedings of the 9th AIAA MDO conference AIAA-2002-4901

  • Zillober C (2002) SCPIP—an efficient software tool for the solution of structural optimization problems. Struct Multidiscip Optim 24(5):362–371

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Stellenbosch University’s Department of Mechanical and Mechatronic Engineering for financial support, and Charl Möller, administrator of the Rhasatsha HPC, for technical assistance and support. Gratitude is also extended to the reviewers of the manuscript, whose willingness to comment, criticize, and suggest improvement, contributed to a manuscript of increased quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Munro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munro, D., Groenwold, A.A. On design-set restriction in SAND topology optimization. Struct Multidisc Optim 57, 1579–1592 (2018). https://doi.org/10.1007/s00158-017-1827-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1827-9

Keywords

Navigation