Structural and Multidisciplinary Optimization

, Volume 57, Issue 4, pp 1579–1592 | Cite as

On design-set restriction in SAND topology optimization

  • Dirk Munro
  • Albert A. Groenwold


We study design-set restriction—i.e., the issue of nonexistence of solutions, mesh-dependence, and local minima—in the alternative SAND (‘simultaneous analysis and design’, or ‘direct’) setting of the classical SIMP minimum compliance topology optimization problem. Compared to some predominant filtering techniques, which are typically studied in the conventional NAND setting, so-called ‘slope constraints’—point-wise bounds on the gradient of the material distribution function—necessitate only a reasonable amount of computational resources in the alternative SAND setting. The numerical method is based on a standard finite element procedure and sequential approximate optimization (SAO) method. Numerical experiments with a random multistart strategy and a simple relaxation procedure suggest that ‘probably’ globally optimal 0-1 designs may be obtained in a reasonable amount of computation time.


Topology design Simultaneous analysis and design (SAND) Quasi-Newton methods Finite element methods Restriction methods Slope constraints 



The authors wish to thank Stellenbosch University’s Department of Mechanical and Mechatronic Engineering for financial support, and Charl Möller, administrator of the Rhasatsha HPC, for technical assistance and support. Gratitude is also extended to the reviewers of the manuscript, whose willingness to comment, criticize, and suggest improvement, contributed to a manuscript of increased quality.


  1. Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in Matlab using 88 lines of code. Struct Multidiscip Optim 43(1):1–16CrossRefzbMATHGoogle Scholar
  2. Arora JS, Wang Q (2005) Review of formulations for structural and mechanical system optimization. Struct Multidiscip Optim 30(4):251–272MathSciNetCrossRefzbMATHGoogle Scholar
  3. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRefGoogle Scholar
  4. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654zbMATHGoogle Scholar
  5. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, BerlinzbMATHGoogle Scholar
  6. Bendsøe MP, Ben-Tal A, Haftka R (1991) New displacement-based methods for optimal truss topology design. In: 32nd structures, structural dynamics, and materials conference. American Institute of Aeronautics and Astronautics, BaltimoreGoogle Scholar
  7. Bolton H, Groenwold A, Snyman J (2004) The application of a unified Bayesian stopping criterion in competing parallel algorithms for global optimization. Comput Math Appl 48(3):549–560MathSciNetCrossRefzbMATHGoogle Scholar
  8. Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158MathSciNetCrossRefzbMATHGoogle Scholar
  9. Etman LFP, Groenwold AA, Rooda JE (2012) First-order sequential convex programming using approximate diagonal qp subproblems. Struct Multidiscip Optim 45(4):479–488MathSciNetCrossRefzbMATHGoogle Scholar
  10. Fletcher R, Gould NI, Leyffer S, Toint PL, Wächter A (2002) Global convergence of a trust-region sqp-filter algorithm for general nonlinear programming. SIAM J Optim 13(3):635–659MathSciNetCrossRefzbMATHGoogle Scholar
  11. Fleury C (1989) Conlin: an efficient dual optimizer based on convex approximation concepts. Struct Optim 1:81–89CrossRefGoogle Scholar
  12. Fleury C, Braibant V (1986) Structural optimization: a new dual method using mixed variables. Int J Numer Methods Eng 23(3): 409–428MathSciNetCrossRefzbMATHGoogle Scholar
  13. Groenwold AA, Etman LFP (2008) On the equivalence of optimality criterion and sequential approximate optimization methods in the classical topology layout problem. Int J Numer Methods Eng 73(3):297–316MathSciNetCrossRefzbMATHGoogle Scholar
  14. Groenwold AA, Etman LFP (2010) A quadratic approximation for structural topology optimization. Int J Numer Methods Eng 82(4):505–524MathSciNetzbMATHGoogle Scholar
  15. Gurobi Optimization Inc. (2015) Gurobi optimizer reference manual.
  16. Haftka RT (1985) Simultaneous analysis and design. AIAA J 23(7):1099–1103MathSciNetCrossRefzbMATHGoogle Scholar
  17. Haftka R, Kamat M (1989) Simultaneous nonlinear structural analysis and design. Comput Mech 4 (6):409–416CrossRefzbMATHGoogle Scholar
  18. Munro D, Groenwold AA (2016a) Local stress-constrained and slope-constrained SAND topology optimisation. Int J Numer Methods Eng 110(5):420–439. MathSciNetCrossRefzbMATHGoogle Scholar
  19. Munro D, Groenwold AA (2016b) On sequential approximate simultaneous analysis and design in classical topology optimization. Int J Numer Methods Eng 110(3):227–247. MathSciNetCrossRefzbMATHGoogle Scholar
  20. Petersson J (1999) Some convergence results in perimeter-controlled topology optimization. Comput Methods Appl Mech Eng 171(1–2):123–140MathSciNetCrossRefzbMATHGoogle Scholar
  21. Petersson J, Sigmund O (1998) Slope constrained topology optimization. Int J Numer Methods Eng 41(8):1417–1434MathSciNetCrossRefzbMATHGoogle Scholar
  22. Rietz A (2001) Sufficiency of a finite exponent in simp (power law) methods. Struct Multidiscip Optim 21(2):159–163CrossRefGoogle Scholar
  23. Rojas-Labanda S, Stolpe M (2015a) Benchmarking optimization solvers for structural topology optimization. Struct Multidiscip Optim 52 (3):527–547. MathSciNetCrossRefGoogle Scholar
  24. Rojas-Labanda S, Stolpe M (2015b) An efficient second-order SQP method for structural topology optimization. Struct Multidiscip Optim 53(6):1315–1333. MathSciNetCrossRefGoogle Scholar
  25. Rozvany G, Zhou M (1991) Applications of the coc algorithm in layout optimization. In: Engineering optimization in design processes. Springer, pp 59–70Google Scholar
  26. Sankaranarayanan S, Haftka RT, Kapania RK (1994) Truss topology optimization with simultaneous analysis and design. AIAA J 32(2):420–424CrossRefGoogle Scholar
  27. Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21 (2):120–127CrossRefGoogle Scholar
  28. Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424CrossRefGoogle Scholar
  29. Sigmund O, Maute K (2012) Sensitivity filtering from a continuum mechanics perspective. Struct Multidiscip Optim 46(4):471– 475MathSciNetCrossRefzbMATHGoogle Scholar
  30. Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75CrossRefGoogle Scholar
  31. Stolpe M (2010) On some fundamental properties of structural topology optimization problems. Struct Multidiscip Optim 41(5): 661–670CrossRefzbMATHGoogle Scholar
  32. Stolpe M, Svanberg K (2003) A note on stress-constrained truss topology optimization. Struct Multidiscip Optim 25(1):62–64CrossRefzbMATHGoogle Scholar
  33. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2): 359–373MathSciNetCrossRefzbMATHGoogle Scholar
  34. University of Stellenbosch’s Rhasatsha HPC (2017) Accessed 27 June 2016
  35. Wang Q, Arora JS (2007) Optimization of large-scale truss structures using sparse SAND formulations. Int J Numer Methods Eng 69(2):390–407CrossRefzbMATHGoogle Scholar
  36. Zhou M, Fleury R, Shyy YK, Thomas H, Brennan J (2002) Progress in topology optimization with manufacturing constraints. In: Proceedings of the 9th AIAA MDO conference AIAA-2002-4901Google Scholar
  37. Zillober C (2002) SCPIP—an efficient software tool for the solution of structural optimization problems. Struct Multidiscip Optim 24(5):362–371CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Mechanical and Mechatronic EngineeringUniversity of StellenboschStellenboschSouth Africa

Personalised recommendations