Skip to main content

Advertisement

Log in

From zero to hero: the past, present and future of grain amaranth breeding

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Grain amaranth is an underutilized crop with high nutritional quality from the Americas. Emerging genomic and biotechnological tools are becoming available that allow the integration of novel breeding techniques for rapid improvement of amaranth and other underutilized crops.

Abstract

Out of thousands of edible plants, only three cereals—maize, wheat and rice—are the major food sources for a majority of people worldwide. While these crops provide high amounts of calories, they are low in protein and other essential nutrients. The dependence on only few crops, with often narrow genetic basis, leads to a high vulnerability of modern cropping systems to the predicted climate change and accompanying weather extremes. Broadening our food sources through the integration of so-called orphan crops can help to mitigate the effects of environmental change and improve qualitative food security. Thousands of traditional crops are known, but have received little attention in the last century and breeding efforts were limited. Amaranth is such an underutilized pseudocereal that is of particular interest because of its balanced amino acid and micronutrient profiles. Additionally, the C4 photosynthetic pathway and ability to withstand environmental stress make the crop a suitable choice for future agricultural systems. Despite the potential of amaranth, efforts of genetic improvement lag considerably behind those of major crops. The progress in novel breeding methods and molecular techniques developed in model plants and major crops allow a rapid improvement of underutilized crops. Here, we review the history of amaranth and recent advances in genomic tools and give a concrete perspective how novel breeding techniques can be implemented into breeding programs. Our perspectives are transferable to many underutilized crops. The implementation of these could improve the nutritional quality and climate resilience of future cropping systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Data from Rastogi and Shukla 2013; Petry et al. 2015; Kumar et al. 2016)

Fig. 3

Similar content being viewed by others

References

  • Akin-Idowu PE, Odunola OA, Gbadegesin MA, Oke A, Orkpeh U (2013) Assessment of the protein quality of twenty nine grain amaranth (Amaranthus spp. L.) accessions using amino acid analysis and one-dimensional electrophoresis. Afr J Biotechnol 12:1802–1810

    Article  CAS  Google Scholar 

  • Alvarez-Jubete L, Arendt EK, Gallagher E (2009) Nutritive value of pseudocereals and their increasing use as functional gluten free ingredients. Int J Food Sci Nutr 60:240–257

    Article  CAS  PubMed  Google Scholar 

  • Andini R, Yoshida S, Ohsawa R (2013) Variation in protein content and amino acids in the leaves of grain, vegetable and weedy types of amaranths. Agronomy 3:391–403

    Article  CAS  Google Scholar 

  • Arreguez GA, Martínez JG, Ponessa G (2013) Amaranthus hybridus L. ssp. hybridus in an archaeological site from the initial Mid-Holocene in the Southern Argentinian Puna. Quat Int 307:81–85

    Article  Google Scholar 

  • Ayiecho PO (1986) Quantitative studies in two grain amaranth populations using two selection methods. Dissertation abstracts, international, B (Sciences and Engineering), vol 46, p 2189B

  • Babu BK, Agrawal PK, Pandey D, Kumar A (2014) Comparative genomics and association mapping approaches for opaque 2 modifier genes in finger millet accessions using genic, genomic and candidate gene-based simple sequence repeat markers. Mol Breed 34:1261–1279

    Article  CAS  Google Scholar 

  • Baltensperger DD, Weber LE, Nelson LA (1992) Registration of ‘Plainsman’ grain amaranths. Crop Sci 32:1510–1511

    Article  Google Scholar 

  • Barba de la Rosa AP, Fomsgaard IS, Laursen B, Mortensen AG, Martinez LO, Silva-Sanchez C, Mendoza-Herrera A, González-Castañeda J, León-Rodríguez AD (2009) Amaranth (Amaranthus hypochondriacus) as an alternative crop for sustainable food production: Phenolic acids and flavonoids with potential impact on its nutraceutical quality. J Cereal Sci 49:117–121

    Article  CAS  Google Scholar 

  • Behera B, Tripathy A, Patnaik SN (1974) Histological analysis of colchicines-induced deformities and cyto chimeras in Amaranthus caudatus and A. dubius. J Hered 65:179–184

    Article  Google Scholar 

  • Bhat A, Satpathy G, Gupta RK (2015) Evaluation of Nutraceutical properties of Amaranthus hypochondriacus L. grains and formulation of value added cookies. J Pharmacogn Phytochem 3:51–54

    Google Scholar 

  • Bhatia AL (2005) Growing colorful and nutritious Amaranths. Indian J Nat Prod Resour 4:40–43

    Google Scholar 

  • Boeven PHG, Longin CFH, Würschum T (2016) A unified framework for hybrid breeding and the establishment of heterotic groups in wheat. Theor Appl Genet 129:1231–1245

    Article  PubMed  Google Scholar 

  • Bohra A, Jha UC, Adhimoolam P, Bisht D, Singh NP (2016) Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep 35:967–993

    Article  CAS  PubMed  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  PubMed  Google Scholar 

  • Brenner DM (2002) Non-shattering grain amaranth populations. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 104–106

    Google Scholar 

  • Brenner DM, Baltensperger DD, Kulakow PA et al (2000) Genetic resources and breeding in Amaranthus. In: Janick J (ed) Plant breeding reviews, vol 19. Wiley, New York, pp 227–285

    Google Scholar 

  • Bressani R, Sanchez Marroquin A, Morales E (1992) Chemical-composition of grain amaranth cultivars and effects of processing on their nutritional quality. Food Rev Int 8:23–49

    Article  CAS  Google Scholar 

  • Burki HM, Schroeder D, Lawrie J, Cagan L, Varablova M, El-Aydam M, Szentkiralgi F, Ghorbani R, Juttersonke B, Ammon HU (1997) Biological control of pigweeds (A.retroflexus L., A. powellii., S. Watson and A. bouchonil Thell.) with phytophagous insects, fungal pathogens and crop management. Integr Pest Manag Rev 2:51–59

    Article  Google Scholar 

  • Calderon de la Barca AM, Rojas-Martinez ME, Islas-Rubio AR, Cabrera-Chavez F (2010) Gluten-free breads and cookies of raw and popped amaranth flours with attractive technological and nutritional qualities. Plant Foods Hum Nutr 65:241–246

    Article  CAS  Google Scholar 

  • Carlos-Mendoza M, Bressani R (1987) Nutritional and functional characteristics of extrusion-cooked amaranth flour. Cereal Chem 64:218–222

    Google Scholar 

  • Chaney L, Mangelson R, Ramaraj T, Jellen EN, Peter JM (2016) The complete chloroplast genome sequences for four Amaranthus species (Amaranthaceae). Appl Plant Sci 4:1600063

    Article  Google Scholar 

  • Cheng A, Mayes S, Dalle G, Demissew S, Massawe F (2017) Diversifying crops for food and nutrition security—a case of teff. Biol Rev 92:188–198

    Article  PubMed  Google Scholar 

  • Clouse JW, Adhikary D, Page JT, Ramaraj T, Deyholos MK, Udall JA, Fairbanks DJ, Jellen EN, Maughan PJ (2016) The amaranth genome: genome, transcriptome, and physical map assembly. Plant Genome 9:1–14

    Article  CAS  Google Scholar 

  • Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126:867–887

    Article  PubMed  PubMed Central  Google Scholar 

  • Corke H, Wu H, Yue S et al (1997) Developing specially starches from new crops. In: Campbell GM, Webb C, McKee SL (eds) Cereals: novel use and processes. Plenum Press, New York, pp 90–102

    Google Scholar 

  • Costea M, Demason DA (2001) Stem morphology and anatomy in Amaranthus L. (Amaranthaceae)—taxonomic significance. J Torrey Bot Soc 128:254–281

    Article  Google Scholar 

  • Curtis GJ (1967) Graft-transmission of male sterility in sugar beet (Beta vu/guns L.). Euphytica 16:419–424

    Article  Google Scholar 

  • Das S (2016) Amaranthus: a promising crop of future. Springer, Singapore

    Book  Google Scholar 

  • Delano-Frier JP, Aviles-Arnaut H, Casarrubias-Castillo K, Casique-Arroyo G, Castrillon-Arbelaez PA, Herrera-Estrella L, Massange-Sanchez J, Martinez-Gallardo NA, Parra-Cota FI, Vargas-Ortiz E, Estrada-Hernandez MG (2011) Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress. BMC Genom 12:363

    Article  CAS  Google Scholar 

  • Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592–601

    Article  CAS  PubMed  Google Scholar 

  • Dohm JC, Minoche AE, Holtgrawe D, Capella-Gutierrez S, Zakrzewski F, Tafer H, Rupp O, Sorensen TR, Stracke R, Reinhardt R et al (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505:546–549

    Article  CAS  PubMed  Google Scholar 

  • Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30:539–563

    Article  Google Scholar 

  • Espitia RE (1986) Caracterizacion y evaluacion preliminary de germoplasma de Amaranthus spp. Thesis (Ingeniero Agrónomo) Universisdad Autonoma Agraria “Antonio Narro”, Chapingo, México

  • Espitia E (1992) Amaranth germplasm development and agronomic studies in Mexico. Food Rev Int 8:71–86

    Article  Google Scholar 

  • Espitia RE (1994) Breeding of grain amaranth. In: Peredes-Lopez O (ed) Amaranth biology, chemistry and technology. CRC Press, Boca Raton, pp 23–38

    Google Scholar 

  • Evers T, Millar S (2002) Cereal grain structure and development: some implications for quality. J Cereal Sci 36:261–284

    Article  Google Scholar 

  • Forster BP, Thomas WTB (2005) Doubled haploids in genetics and plant breeding. Plant Breed Rev 25:57–88

    CAS  Google Scholar 

  • Gaines TA, Henry B, Byrne PF, Westra P, Nissen J, Shanes DL (2008) Jointed Goatgrass (Aegylops cylindrica) by imidazolinone-resistant wheat hybridization under field conditions. Weed Sci 56:32–36

    Article  CAS  Google Scholar 

  • Gajdošová A, Libiaková G, Ostrolucká MG et al (2008) Mutation breeding in selected Amaranthus spp. In: Libiakova G, Gajdosova A (eds) Abstracts of the 5th International symposium of the European Amaranth Association on Amaranth—Plant for the Future, Institute of Plant Genetics and Biotechnology SAS,Nitra, Slovak Republic, 9–14 Nov 2008, pp 93–94

  • Geiger HH, Schnell EW (1970) Cytoplasmic male sterility in rye (Secale cereale 1.). Crop Sci 10:590–593

    Article  Google Scholar 

  • Gimplinger DM, Erley GS, Dobosc G, Kaul HP (2008) Optimum crop densities for potential yield and harvestable yield of grain amaranth are conflicting. Eur J Agron 28:119–125

    Article  Google Scholar 

  • Gomez-Pando L, Eguiluz A, Jimenez J et al (2009) Barley (Hordeum vulgare) and Kiwicha (Amaranthus caudatus) improvement by mutation induction in Peru. In: Shu QY (ed) Induced plant mutation in the genomics Era. Food and Agriculture Organization of the United Nations, Rome, pp 330–332

    Google Scholar 

  • Gorinstein S, Mashe R, Greene LJ, Arruda P (1991) Evaluation of four Amaranthus species through protein electrophoretic patterns and their amino acid composition. J Agric Food Chem 39:851–854

    Article  CAS  Google Scholar 

  • Grubben GJH (1976) The cultivation of amaranth as a tropical leaf vegetable with special reference to South Dahomey, Report 67. Tropical Research Institute, Amsterdam

  • Grubben GJH, Denton OA (eds) (2004) Plant resources of tropical Africa 2. Vegetables. PROTA Foundation, Wageningen, pp 63–89

    Google Scholar 

  • Grubben GJH, van Sloten DH (1981) Genetic resources of amaranths. The International Board for Plant Genetic Resources Food and Agriculture Organization, Rome, p 45

    Google Scholar 

  • Gudu S, Gupta VK (1988) Male-sterility in the grain amaranth (Amaranthus hypochondriacus ex-Nepal) variety Jumla. Euphytica 37:23–26

    Article  Google Scholar 

  • Guil JL, Rodriguez-Garcia I, Torija E (1997) Nutritional and toxic factors in selected wild edible Plants. Plant Foods Hum Nutr 51:99–107

    Article  CAS  PubMed  Google Scholar 

  • Gupta VK, Gudu S (1990) Inheritance of some morphological trait in grain amaranths. Euphytica 46:79–84

    Article  Google Scholar 

  • Hardison RC (2003) Comparative genomics. PLoS Biol 1:e58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harlan J, De Wet J, Price E (1973) Comparative evolution of cereals. Evolution 27:311–325

    Article  PubMed  Google Scholar 

  • Hauptli H, Jain S (1985) Genetic variation in outcrossing rate and correlated floral traits in a population of grain amaranth (Amaranthus cruentus L.). Genetica 66:21–27

    Article  Google Scholar 

  • Hricová A, Fejér J, Libiaková G, Szabová M, Gažo J, Gajdošová A (2016) Characterization of phenotypic and nutritional properties of valuable Amaranthus cruentus L. mutants. Turk J Agric For 40:761–771

    Article  CAS  Google Scholar 

  • Huang BE, Verbyla KL, Verbyla AP et al (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet 128:999–1017

    Article  PubMed  Google Scholar 

  • Huerta-Ocampo JA, Barba de la Rosa AP (2011) Amaranth: a pseudo-cereal with nutraceutical properties. Curr Nutr Food Sci 7:1–9

    Article  CAS  Google Scholar 

  • IPGRI (1999) Directory of Germplasm collection. Online data base, Rome. http://www.cgiar.org/ipgri/doc/dbintro.htm

  • ISTA (International Seed Testing Association) (2010) International rules for seed testing. International Seed Testing Association, Bassersdorf

    Google Scholar 

  • Jahnke S, Roussel J, Hombach T, Kochs J, Fischbach A, Huber G, Scharr H (2016) phenoSeeder—a robot system for automated handling and phenotyping of individual seeds. Plant Physiol 172:1358–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jofre-Garfias AE, Villegas-Sepulveda N, Cabrera-Ponce JL et al (1997) Agrobacterium mediated transformation of Amaranthus hypochondriacus: light and tissue specific expression of a pea chlorophyll a/b—binding protein promoter. Plant Cell Rep 1:847–852

    Article  Google Scholar 

  • Joshi BD (1986) Genetic variability in grain amaranths. Indian J Agric Sci 56:574–576

    Google Scholar 

  • Joshi BD, Rana RS (1991) Grain amaranths: the future food crops, Shimla science monograph 3. National Bureau of Plant Genetic Resources, New Delhi, p 152

    Google Scholar 

  • Joshi BD, Mehra KL, Sharma SD (1983) Cultivation of grain amaranth in the North-Western hills. Indian Farm 32:35–37

    Google Scholar 

  • Juan R, Pastor J, Alaiz M, Vioque J (2007) Electrophoretic characterization of Amaranthus L. seed protein and its systematic implication. Bot J Linn Soc 155:57–63

    Article  Google Scholar 

  • Kachiguma NK, Mwase W, Maliro M, Damaliphetsa A (2015) Chemical and mineral composition of amaranth (Amaranthus L.) Species Collected From Central Malawi. J Food Res 4:92–102

    Article  CAS  Google Scholar 

  • Kaeppler S (2012) Heterosis: many genes, many mechanisms—end the search for an undiscovered unifying theory. ISRN Botany: 682824-Article ID 682824

  • Kalinowski LS, Navarro JP, Concha AIR, Hermoza GC, Pacheco RA, Choquevilca YC, Jara EV (1992) Grain amaranth research in Peru. Food Rev Int 8:87–124

    Article  Google Scholar 

  • Kauffman CS (1979) Grain amaranth research: an approach to the development of a new crop. In: Proceedings of the second amaranth conference. Rodale Press, Inc., Emmaus, pp 81–90

  • Kauffman CS (1992) Realizing the potential of grain amaranths. Food Rev Int 8:5–21

    Article  Google Scholar 

  • Kauffman CS, Weber LE (1990) Grain amaranth. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland, pp 127–139

    Google Scholar 

  • Kaur S, Singh N, Rana JC (2010) Amaranthus hypochondriacus and Amaranthus caudatus germplasm: characteristics of plants, grain and flours. Food Chem 123:1227–1234

    Article  CAS  Google Scholar 

  • Keckesova M, Galova Z, Hricova A (2012) Changes in protein profile in amaranthus mutant line. J Microbiol Biotechnol Food Sci 1:114–1135

    Google Scholar 

  • Khamar R, Jasrai YT (2014) Nutraceutical analysis of amaranth oil, avocado oil, cumin oil, linseed oil and neem oil. Int J Bioassays 3:2090–2095

    Google Scholar 

  • Khoury CK, Bjorkman AD, Dempewolf H, Ramirez-Villegas J, Guarino L, Jarvisa A, Rieseberg LH, Struik PC (2014) Increasing homogeneity in global food supplies and the implications for food security. PNAS 111:4001–4006

    Article  CAS  PubMed  Google Scholar 

  • Kietlinski KD, Jimenez F, Jellen EN, Maughan PJ, Smith SM, Pratt DB (2014) Relationships between the weedy (Amaranthaceae) and the grain amaranths. Crop Sci 54:220–228

    Article  Google Scholar 

  • Konishi Y, Fumita Y, Ikeda K, Okuno K, Fuwa H (1985) Isolation and characterization of globulin from seeds of Amaranthus hypochondriacus L. Agric Biol Chem 49:1453–1459

    Article  CAS  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulakow PA, Jain SK (1985) The inheritance of flowering time in Amaranthus species. J Genet 64:85–100

    Article  Google Scholar 

  • Kulakow PA, Jain SK (1987) Genetics of grain amaranths. IV. Variation and early generation response to selection in Amaranthus cruentus L. Theor Appl Genet 74:113–120

    Article  CAS  PubMed  Google Scholar 

  • Kulakow PA, Hauptli H, Jain S (1985) Genetics of grain Amaranthus. Mendelian analysis of six colour characteristics. J Hered 76:27–30

    Article  Google Scholar 

  • Kumar ABS, Lakshman K, Jayaveea KN, Sheshadri Shekar D, Khan S, Thippeswamy BS, Veerapur VP (2012) Antidiabetic, antihyperlipidemic and antioxidant activities of methanolic extract of Amaranthus viridis Linn in alloxan induced diabetic rats. Exp Toxicol Pathol 64:75–79

    Article  CAS  Google Scholar 

  • Kumar A, Metwal M, Kaur S, Gupta AK, Puranik S, Singh S, Singh M, Gupta S, Babu BK, Sood S, Yadav R (2016) Nutraceutical value of finger millet [Eleusine coracana (L.) Gaertn.], and their improvement using Omics approaches. Front Plant Sci 7:934

    PubMed  PubMed Central  Google Scholar 

  • Laughnan JR, Gabay SJ (1978) Nuclear and cytoplasmic mutations to fertility in S male sterile maize. In: Walden DB (ed) Maize breeding and genetics. Wiley, New York, pp 427–447

    Google Scholar 

  • Legere A (2005) Risks and consequences of gene flow from herbicide-resistant crops: canola (Brassica napus L) as a case study. Pest Manag Sci 61:292–300

    Article  CAS  PubMed  Google Scholar 

  • Legleite T, Johnson B (2013) Palmer amaranth biology, identification, and management. Purdue Extension WS-51, West Lafayette, p 2

    Google Scholar 

  • Lehman JW, Clark RL, Frey KJ (1991) Biomass heterosis and combining ability in interspecific and intraspecific matings of grain amaranths. Crop Sci 31:1111–1116

    Article  Google Scholar 

  • Li L, Zhang Q, Huang D (2014) A review of imaging techniques for plant phenotyping. Sensors 14:20078–20111

    Article  PubMed  Google Scholar 

  • Lightfoot DJ, Jarvis DE, Ramaraj T, Lee R, Jellen EN, Maughan PJ (2017) Single-molecule sequencing and Hi-C-based proximity-guided assembly of amaranth (Amaranthus hypochondriacus) chromosomes provide insights into genome evolution. BMC Biol 15:74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louw S, Van Eden CF, Weeks WUJ (1998) Curculionidae (Coleoptera) associated with wild and cultivated Amaranthus spp. (Amaranthaceae) in South Africa. African Crop Sci J l3:93–98

    Google Scholar 

  • Ma X, Zhu Q, Chen Y, Liu YG, Y-g L (2016) CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol Plant 9:961–974

    Article  CAS  PubMed  Google Scholar 

  • Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63

    Article  CAS  PubMed  Google Scholar 

  • Mathews MM (2001) India: facts and figures. Sterling Publishers Pvt.Ltd, New Delhi

    Google Scholar 

  • Maughan PJ, Yourstone SM, Jellen EN, Udall JA (2009) SNP discovery via genomic reduction, barcoding and 454-pyrosequencing in amaranth. Plant Genome 2:260–270

    Article  CAS  Google Scholar 

  • Maughan PJ, Smith SM, Fairbanks DJ, Jellen EN (2011) Development, characterization, and linkage mapping of single nucleotide polymorphisms in the grain amaranths (Amaranthus spp.). Plant Genome 4:92–101

    Article  Google Scholar 

  • Mbwambo OI (2013) Morphological characteristics, growth and yield of elite grain and leaf amaranth in Northern Tanzania. Dissertation, Jomo Kenyatta University of Agriculture and Technology

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Misra PS, Pal M, Mitra CR et al (1971) Chemurgic studies on some diploid and tetraploid grain amaranths. Proc Indian Acad Sci Ser B 74:155–160

    Google Scholar 

  • Mlakar GS, Turinek M, Jakop M, Bavec M, Bavec F (2009) Nutrition value and use of grain amaranth: potential future application in bread making. Agricultura 6:43–53

    Google Scholar 

  • Mohindeen HK, Irulappan I (1993) Improvement in amaranths. In: Chadha KL, Kalloo G (eds) Advances in horticulture: vegetable crops, vol 5. Malhotra Publishing House, New Delhi, pp 305–323

    Google Scholar 

  • Mosyakin SL, Robertson KR (1996) New infrageneric taxa and combination in Amaranthus (Amaranthaceae). Ann Bot Fenn 33:275–281

    Google Scholar 

  • Munusamy U, Abdullah SNA, Aziz MA, Khazaai H (2013) Female reproductive system of Amaranthus as the target for Agrobacterium mediated transformation. Adv Biosci Biotechnol 4:188–192

    Article  CAS  Google Scholar 

  • Murugan SB, Sathishkumar R (2016) Establishment of high frequency callus induction and genetic transformation in neglected leafy vegetable Amaranthus trisis. Austin J Biotechnol Bioeng 3:1058

    Google Scholar 

  • Nascimento CA, Mota C, Coelho I, Gueifao S, Santos M, Matos AS, Gimenez A, Lobo M, Samman N, Castanheira I (2014) Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: proximates, minerals and trace elements. Food Chem 148:420–426

    Article  CAS  PubMed  Google Scholar 

  • Okuno K, Sakoguchi S (1982) Inheritance of starch characteristics of perisperm of Amaranthus hypochondriacus. J Hered 73:467

    Article  Google Scholar 

  • Pal M, Khoshoo TN (1977) Evolution and improvement of cultivated amaranths. VIII. Induced autotetraploid in grain types. Z Pflanzenzucht 78:135–148

    Google Scholar 

  • Pal M, Pandey RM, Khoshoo TN (1982) Evolution and improvement of cultivated amaranths. IX. Cytogenetic relationship between the two basic chromosome numbers. J Hered 73:353–356

    Article  Google Scholar 

  • Pal A, Swain SS, Das AB, Mukherjee AK, Chand PK (2013) Stable germ line transformation of a leafy vegetable crop amaranth (Amaranthus tricolor L.) mediated by Agrobacterium tumefaciens. In Vitro Cell Dev Biol Plant 49:114–128

    Article  CAS  Google Scholar 

  • Pandey RM (1984) Genetic studies of yield contributing traits in Amaranthus. Theor Appl Genet 88:121–125

    Google Scholar 

  • Pandey RM (1999) Evolution and improvement of cultivated amaranthus with reference to genome relationship among A.cruentus, A. powellii and A.retroflexus. Genet Resour Crop Evol 46:219–224

    Article  Google Scholar 

  • Pandey RM, Pal M (1985) Genetics of grain protein in Amaranthus. Crop Improv 12:55–58

    Google Scholar 

  • Pandey RM, Singh R (2011) Genetic divergence in grain amaranth (Amaranthus hypochondriacus L.). Genetika 43:41–49

    Article  Google Scholar 

  • Paterson AH, Bowers JE, Burow MD, Draye X, Elsik CG, Jiang CX, Katsar CS, Lan TH, Lin YR, Ming R, Wright RJ (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson T (2010) High speed sorting of grains by color and surface texture. Appl Eng Agric 26:499–505

    Article  Google Scholar 

  • Pedersen B, Kandsen K, Bach E, Eggum BC (1990) The nutritive value of amaranth grain. Plant Food Hum Nutr 40:61–71

    Article  CAS  Google Scholar 

  • Peters I, Jain S (1987) Genetics of grain amaranths III. 3. Gene-cytoplasmic male-sterility. J Hered 78:251–256

    Article  Google Scholar 

  • Petry N, Boy E, Wirth JP, Hurrell RF (2015) The potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients 7(2):1144–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pisarikova B, Zraly Z, Kracmar S, Trckova M, Herzig I (2005) Nutritional value of amaranth (genus Amaranthus L.) grain in diets for broiler chickens. Czech J Anim Sci 50:568–573

    Article  CAS  Google Scholar 

  • Rana JC, Yadav SK, Mandal S et al (2005) Genetic divergence and interrelationship analysis in grain amaranth (Amaranthus hypochondriacus) germplasm. Indian J Genet 65:99–102

    CAS  Google Scholar 

  • Rastogi A, Shukla S (2013) Amaranth: a new millennium crop of nutraceutical values. Crit Rev Food Sci Nutr 53:109–125

    Article  CAS  PubMed  Google Scholar 

  • Reif JC, Zhao Y, Wurschum T, Gowda M, Hahn V (2012) Genomic prediction of sunflower hybrid performance. Plant Breed 132:107–114

    Article  CAS  Google Scholar 

  • Reyad-ul-Ferdous Md, Shamim D, Shahjahan M, Sharif T, Mukti M (2015) Present biological status of potential medicinal plant of Amaranthus viridis: a comprehensive review. Am J Clin Exp Med 3:12–17

    Article  Google Scholar 

  • Sanchez MA (1983) Dos cultivos olvidados de importancia agroindustrial: el amaranto y la quinua. Arch Latinoamer Nutr 33:11–322

    Google Scholar 

  • Sauer JD (1955) Revision of the dioecious amaranths. Madrono 13:5–46

    Google Scholar 

  • Sauer JD (1957) Recent migration and evolution of the dioecious amaranths. Evolution 11:11–31

    Article  Google Scholar 

  • Sauer JD (1967) The grain amaranths and their relatives: a revised taxonomic and geographic survey. Ann Mo Bot Gard 54:103–137

    Article  Google Scholar 

  • Sauer JD (1993) Amaranthaceae: amaranth family. In: Historical geography of crop plants. CRC Press, Boca Raton, pp 9–14

    Google Scholar 

  • Shukla S, Bhargava A, Chatterjee A et al (2010) Genetic Interrelationship among nutritional and qualitative traits in the vegetable amaranthus. Crop Breed Appl Biotechnol 10:16–22

    Article  CAS  Google Scholar 

  • Silva-Sanchez C, Barba de la Rosa AP, Leon-Galvan MF, De Lumen BO, De Leon-Rodriguez A, Gonzalez de Mejia E (2008) Bioactive peptides in amaranth (Amaranthus hypochondriacus) seed. J Agric Food Chem 56:1233–1240

    Article  CAS  PubMed  Google Scholar 

  • Sooby J, Myers RI, Baltensperger DD et al (1998) Amaranth: production guide for the Central United States, a guide to growing and marketing. University of Nebraska Cooperative Extension, EC 98-151-S

  • Stallknecht GF, Schulz-Schaeffer JR (1993) Amaranth rediscovered. In: Janick J, Simon JE (eds) New crops. Wiley, New York, pp 211–218

    Google Scholar 

  • Stetter MG, Schmid KJ (2017) Analysis of phylogenetic relationships and genome size evolution of the Amaranthus genus using GBS indicates the ancestors of an ancient crop. Mol Phylogenet Evol 109:80–92

    Article  PubMed  Google Scholar 

  • Stetter MG, Zeitler L, Steinhaus A, Kroener K, Biljecki M, Schmid KJ (2016) Crossing methods and cultivation conditions for rapid production of segregating populations in three grain amaranth species. Front Plant Sci 7:816

    Article  PubMed  PubMed Central  Google Scholar 

  • Stetter MG, Müller T, Schmid KJ (2017) Genomic and phenotypic evidence for an incomplete domestication of South American grain amaranth (Amaranthus caudatus). Mol Ecol 26:871–886

    Article  CAS  PubMed  Google Scholar 

  • Stuber CW (1994) Heterosis in plant breeding. Plant Breed Rev 12:227–251

    Google Scholar 

  • Sun H, Yue S (1993) The research and development of grain amaranths in China. In: Yue S (ed) The research and development of grain amaranth in China. Institute of Crop Breeding and Cultivation, Chinese Academy of Agricultural Sciences, Beijing, pp 449–464

    Google Scholar 

  • Sunil M, Hariharan AK, Nayak S, Gupta S, Nambisan SR, Gupta RP, Panda B, Choudhary B, Srinivasan S (2014) The draft genome and transcriptome of Amaranthus hypochondriacus: a C4 dicot producing high-lysine edible pseudo-cereal. DNA Res 21:585–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swain SS, Sahu L, Banik DP et al (2010) Agrobacterium x plant factors influencing transformation of Joseph’s coat (Amaranthus tricolor L.). Sci Hortic 125:461–468

    Article  CAS  Google Scholar 

  • Tanabata T, Shibaya T, Hori K, Ebana K, Yano M (2012) SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis. Plant Physiol 160:1871–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tosi EA, Re ED, Lucero H, Masciarelli R (2001) Dietary fiber obtained from amaranth (Amaranthus cruentus) grain by differential milling. Food Chem 73:441–443

    Article  CAS  Google Scholar 

  • Trucco F, Tranel PJ (2011) Amarantus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, vegetables. Springer, Berlin, pp 11–20

    Chapter  Google Scholar 

  • Trucco F, Hager AG, Tranel PG (2006) Acetolactate synthase mutation conferring imidazolinone-specific herbicide resistance in Amaranthus hybridus. J Plant Physiol 163:475–479

    Article  CAS  PubMed  Google Scholar 

  • Tucker JB (1986) Amaranth: the once and future crop. BioScience 36:9–13

    Article  Google Scholar 

  • Vaidya KR, Jain SK (1987) Response to mass selection for plant height and grain yield in amaranth (Amaranthus spp.). Plant Breed 98:61–64

    Article  Google Scholar 

  • Varshney RK, Mohan SM, Gaur PM, Gangarao NVPR, Pandey MK, Bohra A et al (2013) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv 31:1–55

    Article  Google Scholar 

  • Velu G, Crossa J, Singh RP, Hao Y, Dreisigacker S, Perez-Rodriguez P, Joshi AK, Chatrath R, Gupta V, Balasubramaniam A, Tiwari C, Mishra VK, Singh Sohu V, Singh Mavi G (2016) Genomic prediction for grain zinc and iron concentrations in spring wheat. Theor Appl Genet 129:1595–1605

    Article  CAS  PubMed  Google Scholar 

  • Venskutonis PR, Kraujalis P (2013) Nutritional components of amaranth seeds and vegetables: a review on composition, properties, and uses. Compr Rev Food Sci Food Saf 12:381–412

    Article  CAS  Google Scholar 

  • Watson A, Ghosh S, Williams M, Cuddy WS, Simmonds J, Rey M-D, Hatta MAM, Hinchliffe A, Steed A, Reynolds D, Adamski N, Breakspear A, Korolev A, Rayner T, Dixon LE, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters MJ, DeLacy IH, Zhou J, Uauy C, Boden SA, Park RF, Wulff BBH, Hickey LT (2018) Speed breeding: a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29

    Article  PubMed  Google Scholar 

  • Wu X, Blair MW (2017) Diversity in grain amaranths and relatives distinguished by genotyping by sequencing (GBS). Front Plant Sci 8:1960

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Raboanatahiry N, Zhu B, Li M (2017) Progress in genome editing technology and its application in plants. Front Plant Sci 8:177

    PubMed  PubMed Central  Google Scholar 

  • Zheleznov AV, Solonenko LP, Zheleznova NB (1997) Seed proteins of the wild and the cultivated Amaranthus species. Euphytica 97:177–182

    Article  CAS  Google Scholar 

  • Zou C, Chen A, Xiao L et al (2017) A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and exceptional nutritional value. Cell Res 27:1327–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank David Brenner and the anonymous reviewers for helpful comments that improved the manuscript. The small millets and underutilized crops breeding project of DCJ was supported by Indian Council of Agricultural Research, New Delhi. MGS acknowledges the support by Grant STE 2654/1-1 of the Deutsche Forschungsgemeinschaft (DFG).

Author contribution statement

DCJ and MGS conceived the idea, coordinated the manuscript layout and wrote the article. SS and RH wrote the section on nutraceutical value of amaranth and drafted Table 1. LK and AP improved the manuscript and provided revisions to the different sections of the manuscript. AK and DY improved the manuscript and provided inputs for the genomics and molecular breeding section. All the authors have read and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dinesh C. Joshi or Markus G. Stetter.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Rajeev K. Varshney.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, D.C., Sood, S., Hosahatti, R. et al. From zero to hero: the past, present and future of grain amaranth breeding. Theor Appl Genet 131, 1807–1823 (2018). https://doi.org/10.1007/s00122-018-3138-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3138-y

Navigation