Skip to main content
Log in

Comparison of three systems for automatic grain angle determination on European hardwood for construction use

  • Original Article
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

This paper aims to sketch the research results on machine grain angle determination on six indigenous hardwoods and spruce as reference. The system widely used for softwood grain angle determination (tracheid effect) is only restrictedly suitable for hardwoods. Therefore, the systems microwave scanning and electrical field strength measurement were tested as well as the above-mentioned tracheid effect with optimized settings. The measured grain angles were compared to visually determined splitting angles (reference angles). All three machine systems give reliable grain angle values for spruce. For oak, the tracheid effect is not applicable. The reference angle splitting contains weaknesses. Nonetheless, high coefficients of determination (R2) indicate a functioning automatic measurement system. Thus, it can be concluded that for the majority of the tested species automatic grain angle determination is possible. Ash does not show satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(adapted from Kollmann and Côté Jr 1968)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Augustin M (2004) Eine zusammenfassende Darstellung der Festigkeitssortierung von Schnittholz [A summary of the strength grading of sawn wood]. Diploma thesis, Graz University of Technology, Austria

  • Baradit E, Aedo R, Correa J (2006) Knots detection in wood using microwaves. Wood Sci Technol 40:118–123

    Article  CAS  Google Scholar 

  • Becker G (1993) Verfahren der zerstörungsfreien Holzprüfung—Entwicklungstendenzen in Nordamerika and Folgerungen für die Anwendung in Mitteleuropa [Methods of non-destructive wood testing—development tendencies in North America and conclusions for application in Central Europe]. Holz Roh- Werkst 51:83–87

    Article  Google Scholar 

  • Bogosanovic M, Al Anbuky A, Emms GW (2010) Overview and comparison of microwave noncontact wood measurement techniques. J Wood Sci 56:357–365

    Article  Google Scholar 

  • Brännström M, Manninen J, Oja J (2008) Predicting the strength of sawn wood by tracheid laser scattering. BioResources 3:437–451

    Google Scholar 

  • Bucur V (2003) Nondestructive characterization and imaging of wood. Springer Series in Wood Science, Berlin

    Book  Google Scholar 

  • Chazelas J, Vergne A, Bucur V (1988) Analyse de la variation des propriétes physique et méchanique locales du bois autour des noeuds [Analysis of the variation of the local physical and mechanical properties of wood around knots]. In: Actes du Colloque Comportement Mecanique du Bois, Bordeaux, pp 376–386

    Google Scholar 

  • Daval V, Pot G, Belkacemi M et al (2015) Automatic measurement of wood fiber orientation and knot detection using an optical system based on heating conduction. Opt Express 23:33529–33539

    Article  PubMed  Google Scholar 

  • Denzler JK, Weidenhiller A (2015) Microwave scanning as an additional grading principle for sawn timber. Eur J Wood Prod 73:423–431

    Article  CAS  Google Scholar 

  • Denzler JK, Koppensteiner J, Arthaber H (2013) Grain angle detection on local scale using microwave transmission. Int Wood Prod J 4:68–74

    Article  Google Scholar 

  • Denzler JK, Lux C, Arthaber H (2014) Contactless moisture content and density evaluation of sawn timber using microwave transmission. Int Wood Prod J 5:200–206

    Article  Google Scholar 

  • DIN 4074-5 (2008) Strength grading of wood—Part 5: Sawn hardwood. German Institute for Standardization, Berlin

    Google Scholar 

  • Federal Ministry of Food and Agriculture (2014) Der Wald in Deutschland—Ausgewählte Ergebnisse der dritten Bundeswaldinventur [The forest in Germany—Selected results of the Third National Forest Inventory]. Bundesministerium für Ernährung und Landwirtschaft (BMEL)

  • Hu C, Tanaka C, Ohtani T (2004a) On-line determination of the grain angle using ellipse analysis of the laser light scattering pattern image. J Wood Sci 50:321–326

    Google Scholar 

  • Hu C, Tanaka C, Ohtani T (2004b) Locating and identifying sound knots and dead knots on sugi by the rule-based color vision system. J Wood Sci 50:115–122

    Google Scholar 

  • Kollmann F, Côté WA Jr (1968) Principles of wood science and technology, I. solid wood. Springer, Berlin

    Book  Google Scholar 

  • Kröner K, Pungs L (1952) Zur dielektrischen Anisotropie des Naturholzes im großen Frequenzbereich [About the dielectric anisotropy of natural wood in the high frequency range]. Holzforsch-Int J Biol Chem Phys Technol Wood 6:13–16

    Google Scholar 

  • Makovíny I (1988) The anisotropy of wood dielectric constants as a function of anatomical structure. Holztechnologie 29:210–213

    Google Scholar 

  • Mathews PC, Beech BH (1976) Method and apparatus for detecting timber defects. U.S. Patent 3976384 A, U.S. Patent Office, Washington, D.C.

  • McDonald K, Bendtsen BA (1986) Localized slope-of-grain—its importance and measurement. In: Pellerin RF (ed) Proceedings of the 5th nondestructive testing of wood symposium. Washington State University, Pullman, WA, pp 477–489

  • McDonald K, Cramer S, Bendtsen B (1988) Research progress in modeling tensile strength of lumber from localized slope of grain. In: Proceedings of the 6th Nondestructive testing of wood symposium. Washington State University, Pullman, WA, pp 113–123

  • Norimoto M, Yamada T (1972) The dielectric properties of wood VI: on the dielectric properties of the chemical constituents of wood and the dielectric anisotropy of wood. Wood Res 52:31–43

    Google Scholar 

  • Norton JAP, Mclauchlan TA, Kusec DJ (1974) Wood slope-of-grain indicator. U.S. Patent 3805156, U.S. Patent Office, Washington, D.C.

  • Nyström J (2003) Automatic measurement of fiber orientation in softwoods by using the tracheid effect. Dev Image Process Scan Wood 41:91–99

    Google Scholar 

  • Oliver-Villanueva JV (1993) Holzeigenschaften der Esche (Fraxinus excelsior L.) und ihre Variabilität im Hinblick auf Alter und Standraum [Wood properties of ash (Fraxinus excelsior L.) and their variability depending on age and stand]. Dissertation, Georg-August-University of Göttingen, Germany

  • Olsson A, Oscarsson J (2014) Three dimensional fibre orientation models for wood based on laser scanning utilizing the tracheid effect. In: Proceedings of the 2014 World Conference on Timber Engineering (WCTE), Quebec City, Canada

  • Olsson A, Oscarsson J, Serrano E et al (2013) Prediction of timber bending strength and in-member cross-sectional stiffness variation on the basis of local wood fibre orientation. Eur J Wood Prod 71:319–333

    Article  CAS  Google Scholar 

  • Petersson H (2010) Strength grading and prediction of shape stability by use of optical and laser-based scanning techniques. In: Proceedings of the 11th World Conference on Timber Engineering (WCTE) 2010, Trento, Italy

  • Sarén M-P, Serimaa R, Tolonen Y (2006) Determination of fiber orientation in Norway spruce using X-ray diffraction and laser scattering. Holz Roh Werkst 64:183–188

    Article  Google Scholar 

  • Schajer GS, Orhan FB (2005) Microwave non-destructive testing of wood and similar orthotropic materials. Subsurf Sens Technol Appl 6:293–313

    Article  Google Scholar 

  • Schajer GS, Orhan FB (2006) Measurement of wood grain angle, moisture content and density using microwaves. Holz Roh- Werkst 64:483–490

    Article  CAS  Google Scholar 

  • Schajer GS, Sutton DB (2016) Identification of 3D wood grain angle by directional reflection measurement. Wood Mater Sci Eng 11:170–175

    Article  Google Scholar 

  • Schickhofer G, Augustin M (2001) EU-Project INTELLIWOOD—final report; working package 3: strength correspondence. Graz, Austria

    Google Scholar 

  • Schlotzhauer P, Emmerich L, Militz H, Bollmus S (2014) Machine grain angle determination on six European hardwoods. In: Németh R, Teischinger A, Schmitt U (eds) Proceedings of the “IAWS Plenary Meeting 2014—Sopron (Hungary)—Vienna (Austria) -Eco-efficient Resource Wood with special focus on hardwoods, University of West Hungary Press, Sopron, Hungary, pp 45–46

  • Seintsch B, Weimar H (2012) Actual situation and future perspectives for supply and demand of hardwood in Germany. In: Nemeth R, Teischinger A (eds) The 5th conference on hardwood research and utilisation in Europe 2012. University of West Hungary Press, Sopron, pp 301–312

    Google Scholar 

  • Shen J, Zhou J, Vazquez O (2000) Experimental study of optical scattering and fiber orientation determination of softwood and hardwood with different surface finishes. Appl Spectrosc 54:1793–1804

    Article  CAS  Google Scholar 

  • Simonaho S-P, Palviainen J, Tolonen Y, Silvennoinen R (2004) Determination of wood grain direction from laser light scattering pattern. Opt Lasers Eng 41:95–103

    Article  Google Scholar 

  • Stahl DC, Cramer SM, McDonald KA (1990) Modeling the effect of out-of-plane fiber orientation in lumber specimens. Wood Fiber Sci 22:173–192

    Google Scholar 

  • Steele PH, Neal SC, McDonald KA, Cramer SM (1991) The slope-of-grain indicator for defect detection in unplaned hardwood lumber. For Prod J 41:15–20

    Google Scholar 

  • Torgovnikov GI (1993) Dielectric properties of wood and wood-based materials. Springer, Berlin

    Book  Google Scholar 

  • Viguier J, Jehl A, Collet R et al (2015) Improving strength grading of timber by grain angle measurement and mechanical modeling. Wood Mater Sci Eng 10:145–156

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Federal Ministry of Food and Agriculture through the Agency for Renewable Resources (FNR). Very special thanks go to the Austrian Forest Products Research Society (Holzforschung Austria) for supplying a microwave scanning machine and the company ATB Blank GmbH for contributing the hardware and software to evaluate the ‘tracheid effect’ on hardwood. A hand-held device for the electrical field strength measurement was supplied by the company Metriguard Inc. (USA) and a second one by the DOKA Group Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Schlotzhauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlotzhauer, P., Wilhelms, F., Lux, C. et al. Comparison of three systems for automatic grain angle determination on European hardwood for construction use. Eur. J. Wood Prod. 76, 911–923 (2018). https://doi.org/10.1007/s00107-018-1286-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-018-1286-z

Navigation