Skip to main content
Log in

Marginalized Particle Flow Filter

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

As an alternative to the Kalman filter and the particle filter, the particle flow filter has recently attracted interest for solving the curse of dimensionality of the particle filter. Compared with the particle filter, the particle flow filter can obtain a better performance in high-dimensional state spaces with fewer samples. However, for some unobservable state dimensions, the flow operation wastes computational resources. In this paper, we propose a marginalized particle flow filter to handle the unobservable sub-state estimation. In contrast to the standard particle flow filter, we only migrate those observable dimensions of each particle according to homotopy theory and estimate the unobservable dimensions using the Kalman filter. The proposed algorithm can enhance the estimation quality of the unobservable state space and reduce the runtime of the particle flow filter. We evaluate the performance of the proposed algorithm through a multi-target tracking simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  2. T. Bengtsson, P. Bickel, B. Li et al., Curse-of-dimensionality revisited: collapse of the particle filter in very large scale systems, in Probability and Statistics: Essays in Honor of David A. Freedman, ed. by D. Nolan, T. Speed (Institute of Mathematical Statistics, Beachwood, 2008), pp. 316–334

    Chapter  Google Scholar 

  3. A. Beskos, D. Crisan, A. Jasra et al., On the stability of sequential Monte Carlo methods in high dimensions. Ann Appl Probab 24(4), 1396–1445 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Beutler, M.F. Huber, U.D. Hanebeck, Gaussian filtering using state decomposition methods, in 12th International Conference on Information Fusion, 2009, FUSION’09 (IEEE, 2009), pp. 579–586

  5. P. Bickel, B. Li, T. Bengtsson et al., Sharp failure rates for the bootstrap particle filter in high dimensions. In Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh (Institute of Mathematical Statistics, 2008), pp. 318–329

  6. P. Bunch, S. Godsill, Approximations of the optimal importance density using Gaussian particle flow importance sampling. J. Am. Stat. Assoc. 111(514), 748–762 (2016)

    Article  MathSciNet  Google Scholar 

  7. B. Chen, G. Hu, D.W.C. Ho, L. Yu, A new approach to linear/nonlinear distributed fusion estimation problem. IEEE Trans. Autom. Control (2018). https://doi.org/10.1109/TAC.2018.2849612

  8. S. Choi, P. Willett, F. Daum, J. Huang, Discussion and application of the homotopy filter, in SPIE Defense, Security, and Sensing (International Society for Optics and Photonics, 2011), p. 805021

  9. R. Costa, T.A. Wettergren, Computationally efficient angles-only tracking with particle flow filters, in SPIE Defense+ Security (International Society for Optics and Photonics, 2015), p. 947404

  10. F. Daum, J. Huang, Nonlinear filters with log-homotopy, in Proc. SPIE, vol. 6699, p. 669918- (2007)

  11. F. Daum, J. Huang, Particle flow for nonlinear filters with log-homotopy, in SPIE Defense and Security Symposium (International Society for Optics and Photonics, 2008), p. 696918

  12. F. Daum, J. Huang, Generalized particle flow for nonlinear filters, in SPIE Defense, Security, and Sensing (International Society for Optics and Photonics, 2010), p. 76980I

  13. F. Daum, J. Huang. Particle flow with non-zero diffusion for nonlinear filters, in Proceedings of SPIE: Signal processing, Sensor Fusion and Target Tracking XXII (2013), p. 87450P

  14. F. Daum, J. Huang, A. Noushin, Exact particle flow for nonlinear filters, in SPIE Defense, Security, and Sensing (International Society for Optics and Photonics, 2010), p. 769704

  15. F. Daum, J. Huang, A. Noushin, Generalized Gromov method for stochastic particle flow filters, in SPIE Defense+ Security (International Society for Optics and Photonics, 2017), p. 102000I

  16. F. Daum, J. Huang, Nonlinear filters with particle flow induced by log-homotopy, in SPIE Defense, Security, and Sensing (International Society for Optics and Photonics, 2009), p. 733603

  17. T. Ding, M. Coates, Implementation of the Daum–Huang exact-flow particle filter. 2012 IEEE Statistical Signal Processing Workshop (SSP) (2012), pp. 257–260

  18. A. Doucet, N. De Freitas, N. Gordon, Sequential Monte Carlo Methods in Practice (Springer, Berlin, 2001)

    Book  MATH  Google Scholar 

  19. G. Hendeby, R. Karlsson, F. Gustafsson, The Rao-Blackwellized particle filter: a filter bank implementation. EURASIP J. Adv. Signal Process. 2010(1), 724087 (2010)

    Article  Google Scholar 

  20. S.J. Julier, J.K. Uhlmann, Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004)

    Article  Google Scholar 

  21. R. Karlsson, T. Schon, F. Gustafsson, Complexity Analysis of the Marginalized Particle Filter (IEEE Press, New York, 2005)

    Book  MATH  Google Scholar 

  22. M.A. Khan, M. Ulmke. Improvements in the implementation of log-homotopy based particle flow filters, in 2015 18th International Conference on Information Fusion (Fusion) (IEEE, 2015), pp. 74–81

  23. Y. Li, M. Coates, Particle filtering with invertible particle flow. IEEE Trans. Signal Process. 65(15), 4102–4116 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Maskell, N. Gordon, A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking. Target Track. Algorithms Appl. (Ref. No. 2001/174), 2, 21–215 (2001)

    Google Scholar 

  25. M. Morzfeld, D. Hodyss, C. Snyder, What the collapse of the ensemble Kalman filter tells us about particle filters. Tellus A Dyn. Meteorol. Oceanogr. 69(1), 1283809 (2017)

    Article  Google Scholar 

  26. N. Moshtagh, J. Chan, M. Chan, Homotopy particle filter for ground-based tracking of satellites at GEO, in Advanced Maui Optical and Space Surveillance Technologies Conference (2016)

  27. N. Moshtagh, M.W. Chan, Multisensor fusion using homotopy particle filter, in 2015 18th International Conference on Information Fusion (Fusion) (IEEE, 2015), pp. 1641–1648

  28. M.K. Pitt, N. Shephard, Filtering via simulation: auxiliary particle filters. J. Am. Stat. Assoc. 94(446), 590–599 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Schon, F. Gustafsson, P.J. Nordlund, Marginalized particle filters for mixed linear/nonlinear state-space models. IEEE Trans. Signal Process. 53(7), 2279–2289 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. C. Snyder, T. Bengtsson, P. Bickel, J. Anderson, Obstacles to high-dimensional particle filtering. Mon. Weather Rev. 136(12), 4629–4640 (2008)

    Article  Google Scholar 

  31. R. Van Der Merwe, A. Doucet, N. De Freitas, E.A. Wan, The unscented particle filter, in Advances in Neural Information Processing Systems (2001), pp. 584–590

Download references

Acknowledgements

We are grateful to the referees for their clarifying suggestions, which have improved the presentation of this material, and in articular to Jeremie Houssineau for his comments. This study was supported by the National Natural Science Foundation of China (NSFC, Grant No. 61305013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingling Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In the appendices below, we provide the proofs of Lemma 2 in this article. This procedure consists of two parts. The first part is a Kalman update using the artificial measurement. Moreover, the second step consists of a time update using the result from the first step. Let us start by Eq. (20):

$$\begin{aligned} \begin{aligned} x_{k+1,b}&= F^{b,b}x_{k,b} + F^{b,a}x_{k,a} + G_{k}^{bb}w_{k,b}\\ {\hat{z}}_{k}&= F^{a,b}x_{k,b} + G_{k}^{aa}w_{k,a} \end{aligned} \end{aligned}$$

where \({\hat{z}}_{k} = x_{k+1,a} - F^{a,a}x_{k,a}\) is a “virtual” measurement. Analogously to the update of Kalman filter, we obtain

$$\begin{aligned} {\hat{x}}_{k|k,b}^{*}&= x_{k|k,b} + K_k \left( {\hat{z}}_{k} - F^{a,b}x_{k,b} \right) \\ P_{k|k,b}^{*}&= P_{k|k,b} - K_k S_k K_k^T \\ K_k&= P_{k|k,b} \left( F^{ab}\right) ^T S_k^{-1} \\ S_k&= F^{ab} P_{k|k,b} \left( F^{ab}\right) ^T + G_{k}^{aa}Q_{k,a}{G_{k}^{aa}}^T \end{aligned}$$

The time update is to compute

$$\begin{aligned} x_{k+1|k+1,b}&= F^{bb} {\hat{x}}_{k|k,b}^{*} + F^{ab}x_{k|k,a} \\&= F^{bb} x_{k|k,b} + F^{ab}x_{k|k,a} + F^{bb} K_k\left( {\hat{z}}_{k} - F^{a,b}x_{k,b}\right) \\&= F^{bb} x_{k|k,b} + F^{ab}x_{k|k,a} + L_k\left( {\hat{z}}_{k} - F^{a,b}x_{k,b}\right) \\ P_{k+1|k,b}&= F^{bb} P_{k|k,b}^{*} \left( F^{bb}\right) ^T + G^{bb}Q_{k}^{bb}{(G_k^{bb})}^T \\&= F^{bb}\left( P_{k|k,b} - K_k S_k K_k^T\right) (F^{bb})^T + G^{bb}Q_{k}^{bb}{(G_k^{bb})}^T \\&= F^{bb} P_{k|k,b} \left( F^{bb}\right) ^T + G^{bb}Q_{k}^{bb}{\left( G_k^{bb}\right) }^T - F^{bb} K_k S_k K_k^T (F^{bb})^T \\&= F^{bb} P_{k|k,b} \left( F^{bb}\right) ^T + G^{bb}Q_{k}^{bb}{\left( G_k^{bb}\right) }^T - L_k N_k L_k^T \end{aligned}$$

where

$$\begin{aligned} N_k&= S_k = F^{ab} P_{k|k,b} \left( F^{ab}\right) ^T + G_{k}^{aa}Q_{k,a}{G_{k}^{aa}}^T \\ L_k&= F^{bb} K_k = F^{bb} P_{k|k,b} \left( F^{ab}\right) ^T N_k^{-1} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhao, L. & Su, X. Marginalized Particle Flow Filter. Circuits Syst Signal Process 38, 3152–3169 (2019). https://doi.org/10.1007/s00034-018-1007-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-1007-1

Keywords

Navigation