Skip to main content
Log in

A Closed-Form ARMA-Based ML-Estimator of a Single-Tone Frequency

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The new synthesis methodology for single-tone frequency estimation is proposed on the basis of the maximum likelihood (ML) method and autoregressive moving average (ARMA) models. The novel frequency estimator for the scenario with a strongly correlated interference and an additive white Gaussian noise is synthesized in a closed form. The assumption about a constant value of that interference allows to simplify the mixture and transform it to ARMA (3,3) model. The synthesized estimator is invariant to the interference power when it is actually constant (has a unitary correlation coefficient). The particular and much more usual scenario without the interference and just with the noise is considered as well. For that case, the ML-estimator synthesized using the proposed methodology is equal to the existing modified least squares estimator. It is shown that the proposed ML-estimator has an advantage over the known one when the interference is present in the mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Aboutanios, B. Mulgrew, Iterative frequency estimation by interpolation on Fourier coefficients. IEEE Trans. Signal Process. 4, 1237–1242 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Anarim, Y. Istefanopulos, Statistical analysis of Pisarenko type tone frequency estimator. Signal Process. 3, 291–298 (1991)

    Article  Google Scholar 

  3. J. Angeby, P. Stoika, T. Soderstrom, Asymptotic statistical analysis of autoregressive frequency estimates. Signal Process. 39, 277–292 (1994)

    Article  MATH  Google Scholar 

  4. A. De Sabata, L. Toma, S. Mischie, Two-step Pisarenko harmonic decomposition for single tone frequency estimation. in International Conference on Electric Power Systems, High Voltages, Electric Machines, pp. 243–246 (2007)

  5. R. Elasmi-Ksibi, S. Cherif, R. Lopez-Valcarce, H. Besbes, Closed-form real single-tone frequency estimator based on a normalized IIR notch filter. Signal Process. 90, 1905–1915 (2010)

    Article  MATH  Google Scholar 

  6. R. Elasmi-Ksibi, R. Lopez-Valcarce, H. Besbes, S. Cherif, A family of real single-tone frequency estimators using higher-order sample covariance lags. in European Signal Processing Conference, (2008)

  7. A. Eriksson, P. Stoica, On statistical analysis of Pisarenko tone frequency estimator. Signal Process. 3, 349–353 (1993)

    Article  MATH  Google Scholar 

  8. H. Fuu, P.Y. Kam, MAP/ML estimation of the frequency and phase of a single sinusoid in noise. IEEE Trans. Signal Process. 55, 834–845 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Jaggi, A.B. Martinez, A modified autoregressive spectral estimator for a real sinusoid in white noise. in Proceedings of Energy and Information Technologies, pp. 467–470 (1989)

  10. R.J. Kenefic, A.H. Nuttall, Maximum likelihood estimation of the parameters of tone using real discrete data. IEEE J. Ocean. Eng. 1, 279–280 (1987)

    Article  Google Scholar 

  11. Y.F. Pisarenko, The retrieval of harmonics from a covariance function. Geophys. J. R. Astrophys. Soc. 33, 347–366 (1973)

    Article  MATH  Google Scholar 

  12. B.G. Quinn, J.M. Fernandes, A fast efficient technique for the estimation of frequency. Biometrika 3, 489–497 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Roy, T. Kailath, ESPRIT estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 7, 984–995 (1989)

    Article  MATH  Google Scholar 

  14. H.C. So, K.W. Chan, Reformulation of Pisarenko harmonic decomposition method for single-tone frequency estimation. IEEE Trans. Signal Process. 4, 618–620 (2004)

    MathSciNet  MATH  Google Scholar 

  15. H.C. So, K.W. Chan, Y.T. Chan, K.C. Ho, Linear prediction approach for efficient frequency estimation of multiple real sinusoids: algorithms and analyses. IEEE Trans. Signal Process. 7, 2290–2305 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. H.C. So, F.K.W. Chan, W. Sun, Efficient frequency estimation of a single real tone based on principal singular value decomposition. Digit. Signal Process. 22, 1005–1009 (2012)

    Article  MathSciNet  Google Scholar 

  17. P. Stoika, R.L. Moses, Spectral Analysis of Signals (Prentice Hall, Upper Saddle River, 2005)

    Google Scholar 

  18. D.W. Tufts, P.D. Fiore, Simple, effective estimation of frequency based on Prony’s method. IEEE Trans. Acoust. Speech 5, 2801–2804 (1996)

    Google Scholar 

  19. S. Ye, D.L. Kocherry, E. Aboutanios, A novel algorithm for the estimation of the pa-rameters of a real sinusoid in noise. in European Signal Processing Conference, pp. 2311–2315 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iurii Chyrka.

Appendix A

Appendix A

Synthesis sequence for the ARMA estimator is given as follows. The residuals of linear prediction for the ARMA (2, 2) model are written as

$$\begin{aligned} \nu _n(x_n,x_{n-1},x_{n-2},\hat{\alpha })\equiv x_n-\hat{x}_n=x_n-\hat{\alpha }x_{n-1}+x_{n-2}, \; n= \overline{3,N} . \end{aligned}$$
(49)

Their joint probability density function (PDF) is

$$\begin{aligned} \begin{aligned}&f_{PDF}(\mathbf {\nu }| \alpha ,\sigma )=\frac{\sigma ^{-(N-2)}_{\nu }(\alpha ,\sigma )}{\sqrt{(2\pi )^{N-2}|\mathbf R|}} \\&\qquad \times \exp \left\{ -\frac{1}{2|\mathbf R|} \sum _{n=3}^N \sum _{k=3}^N \frac{d_{nk}\nu _n(x_n,x_{n-1},x_{n-2}|\alpha )\nu _k(x_k,x_{k-1},x_{k-2}|\alpha )}{\sigma ^2_\nu (\alpha ,\sigma )} \right\} , \end{aligned} \end{aligned}$$
(50)

where \(\mathbf {\nu }=\{\nu _3,\dots , \nu _N\}\). We consider this function as a likelihood function and take a logarithm

$$\begin{aligned} \ln f(\alpha ,\sigma | \mathbf {\nu })= \ln \frac{\sigma ^{-(N-2)}_{\nu }(\alpha ,\sigma )}{\sqrt{(2\pi )^{N-2}|\mathbf R|}} -\frac{1}{2|\mathbf R| \sigma ^2_\nu (\alpha ,\sigma )} \sum _{n=3}^N \sum _{k=3}^N d_{nk} \cdot \nu _n(\alpha ) \cdot \nu _k(\alpha ) .\qquad \end{aligned}$$
(51)

After assumptions (30) the first likelihood equation by \(\alpha \) can be written

$$\begin{aligned} \frac{\partial \ln f}{\partial \alpha }=-(N-2)\frac{\sigma _\nu '}{\sigma _\nu }+\frac{\sigma _\nu '}{\sigma ^3_\nu }\varSigma -\frac{1}{2\sigma ^2_\nu }\varSigma '=0, \end{aligned}$$
(52)

where the next values are used

$$\begin{aligned} \begin{aligned} \varSigma (\alpha )&= \sum _{n=3}^N \left[ \nu _n(\alpha ) \right] ^2 \equiv \sum _{n=3}^N \left[ x_n-\alpha x_{n-1}+x_{n-2} \right] ^2, \\ \varSigma '(\alpha )&= -\sum _{n=3}^N \left[ 2x_{n-1} (x_n-\alpha x_{n-1}+x_{n-2}) \right] , \\ \sigma _\nu&=\sigma \sqrt{1+\alpha ^2}, \qquad \qquad \sigma _\nu '=\sigma \alpha /\sqrt{2+\alpha }. \end{aligned} \end{aligned}$$
(53)

After taking to the common denominator and throwing away the cubic term the equation is set to its final form

$$\begin{aligned} \alpha ^2\varSigma '-2\alpha \varSigma +2\varSigma '=A\alpha ^2+B\alpha -2A=0, \end{aligned}$$
(54)

where coefficients are defined by equations

$$\begin{aligned} A= \sum _{n=3}^N \bigl [(x_n+x_{n-2})x_{n-1}\bigr ], \;B=\sum _{n=3}^N \bigl [2x^2_{n-1}- (x_n+x_{n-2} )^2 \bigr ]. \end{aligned}$$
(55)

The desired root is calculated as

$$\begin{aligned} \alpha = \left( -B+\sqrt{B^2+8A^2} \right) /2A. \end{aligned}$$
(56)

Choice of the correct root and the asymptotical unbiasedness can be shown in a way similar to the ARMA-I estimator.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omelchuk, I., Chyrka, I. A Closed-Form ARMA-Based ML-Estimator of a Single-Tone Frequency. Circuits Syst Signal Process 37, 3441–3456 (2018). https://doi.org/10.1007/s00034-017-0714-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0714-3

Keywords

Navigation