Skip to main content
Log in

On the Rayleigh–Taylor Instability in Presence of a Background Shear

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this note we revisit the classical subject of the Rayleigh–Taylor instability in presence of an incompressible background shear flow. We derive a formula for the essential spectral radius of the evolution group generated by the linearization near the steady state and reveal that the velocity variations neutralize shortwave instabilities. The formula is a direct generalization of the result of Hwang and Guo (Arch Ration Mech Anal 167(3):235–253, (2003). Furthermore, we construct a class of steady states which posses unstable discrete spectrum with neutral essential spectrum. The technique involves the WKB analysis of the evolution equation and contains novel compactness criterion for pseudo-differential operators on unbounded domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. The International Series of Monographs on Physics. Clarendon Press, Oxford (1961)

    Google Scholar 

  2. Cherfils-Clérouin, C., Lafitte, O., Raviart, P.-A.: Asymptotic results for the linear stage of the Rayleigh-Taylor instability. In: Mathematical Fluid Mechanics, Adv. Math. Fluid Mech., pp. 47–71. Birkhäuser, Basel (2001)

  3. Friedlander, S.: On nonlinear instability and stability for stratified shear flow. J. Math. Fluid Mech. 3(1), 82–97 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Friedlander, S., Strauss, W., Vishik, M.: Nonlinear instability in an ideal fluid. Ann. Inst. H. Poincaré Anal. Non Linéaire 14(2), 187–209 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Helffer, B., Lafitte, O.: Asymptotic methods for the eigenvalues of the Rayleigh equation for the linearized Rayleigh–Taylor instability. Asymptot. Anal. 33(3–4), 189–235 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Hwang, H.J., Guo, Y.: On the dynamical Rayleigh–Taylor instability. Arch. Ration. Mech. Anal. 167(3), 235–253 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lafitte, O.: Sur la phase linéaire de l’instabilité de Rayleigh-Taylor. In Séminaire: Équations aux Dérivées Partielles, 2000–2001, Sémin. Équ. Dériv. Partielles, pages Exp. No. XXI, 22. École Polytech., Palaiseau, (2001)

  8. Lafitte, O.: The linear and nonlinear Rayleigh–Taylor instability for the quasi-isobaric profile. Phys. D 237(10–12), 1602–1639 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lin, Z.: Nonlinear instability of ideal plane flows. Int. Math. Res. Not. 41, 2147–2178 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lin, Z.: Some recent results on instability of ideal plane flows. In: Nonlinear Partial Differential Equations and Related Analysis, vol. 71 of Contemp. Math., pp. 217–229. Amer. Math. Soc., Providence, RI, (2005)

  11. Lin, Z., Zeng, C.: Unstable manifolds of Euler equations. Comm. Pure Appl. Math. 66(11), 1803–1836 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nussbaum, R.D.: The radius of the essential spectrum. Duke Math. J. 37, 473–478 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rayleigh, L.: Analytic solutions of the Rayleigh equation for linear density profiles. Proc. Lond. Math. Soc. 14, 170–177 (1883)

    MathSciNet  MATH  Google Scholar 

  14. Ruzhansky, M., Turunen, V.: On the Fourier analysis of operators on the torus. In: Modern Trends in Pseudo-Differential Operators, vol. 172 of Oper. Theory Adv. Appl., pp. 87–105. Birkhäuser, Basel, (2007)

  15. Ruzhansky, M., Turunen, V.: Quantization of pseudo-differential operators on the torus. J. Fourier Anal. Appl. 16(6), 943–982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Springer-Verlag, Berlin, second edition, (2001). Translated from the 1978 Russian original by Stig I. Andersson

  17. Shvydkoy, R., Latushkin, Y.: Operator algebras and the Fredholm spectrum of advective equations of linear hydrodynamics. J. Funct. Anal. 257(10), 3309–3328 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shvydkoy, R.: The essential spectrum of advective equations. Commun. Math. Phys. 265(2), 507–545 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Shvydkoy, R.: Continuous spectrum of the 3D Euler equation is a solid annulus. C. R. Math. Acad. Sci. Paris 348(15–16), 897–900 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Trèves, F.: Introduction to Pseudodifferential and Fourier Integral Operators. Vol. 1. Plenum Press, New York-London, (1980). Pseudodifferential operators, The University Series in Mathematics

  21. Vishik, M.: Spectrum of small oscillations of an ideal fluid and Lyapunov exponents. J. Math. Pures Appl. (9) 75(6), 531–557 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Vishik, M., Friedlander, S.: Nonlinear instability in two dimensional ideal fluids: the case of a dominant eigenvalue. Commun. Math. Phys. 243(2), 261–273 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Shvydkoy.

Additional information

The author thanks Zhiwu Lin and Chongchung Zeng for many fruitful conversations and Georgia Institute of Technology for hospitality. This research was partially supported by NSF grant DMS 1515705 and the College of LAS, UIC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvydkoy, R. On the Rayleigh–Taylor Instability in Presence of a Background Shear. J. Math. Fluid Mech. 20, 1195–1211 (2018). https://doi.org/10.1007/s00021-018-0362-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-018-0362-9

Keywords

Mathematics Subject Classification

Navigation