Skip to main content
Log in

Navier–Stokes Hierarchies of Reduced MHD Models in Tokamak Geometry

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We study the closure of reduced MHD models, such as the ones which are used in the modeling of Tokamaks and ITER, see Franck et al. (ESAIM: M2AN 49(5), 2015) and Guillard (2015) and references therein. We show how to modify the entropy moment methods to obtain a hierarchy of Navier–Stokes like models in potential formulation with a correct energy balance. Our procedure is well adapted to the complicated geometry of the torus. We obtain mainly two original results. One is a comparison principle between all these models: it explains that the dynamics of a reduced model is a lower bound of the dynamics of the initial model. The other one the existence of a weak solution to some of these complicate models adapted to the Tokamak geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire, G.: Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation (Numerical Mathematics and Scientific Computation Series). Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  2. Biskamp, D.: Nonlinear Magnetohydrodynamics. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  3. Blum, J.: Numerical Simulation and Optimal Control in Plasma Physics, with Application to Tokamaks, Wiley/Gauthier-Villard Series in Modern Applied Mathematics (1989)

  4. Boillat, G.: Sur l’existence et la recherche d’équation de conservation supplémentaires pour les systèmes hyperboliques. C. R. Acad. Sci. Paris, A 278, 909 (1974)

  5. Boillat, G.: Involutions des systèmes conservatifs. C. R. Acad. Sci. Paris A 307, 891 (1988)

    MATH  Google Scholar 

  6. Boillat, G., Ruggeri, T.: Wave and shock velocities in relativistic magnetohydrodynamics compared with the speed of light. Contin. Mech. Thermodyn. 1, 47 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Boillat, G., Ruggeri, T.: Hyperbolic principal subsystems: entropy convexity and subcharacteristic conditions. Arch. Ration. Mech. Anal. 137(4), 305–320 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boillat, G., Ruggeri, T.: Moment equations in the kinetic theory of gases and wave velocities. Contin. Mech. Thermodyn. 9, 205–212 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Breslau, J., Ferraro, N., Jardin, S.: Some properties of the M3D-C1 form of the 3D magnetohydrodynamics equations. Phys. Plasmas 16, 092503 (2009)

  10. Chacon, L., Knoll, D.A., Finn, J.M.: An implicit, nonlinear reduced resistive MHD solver. J. Comput. Phys. 178(1), 1536 (2002)

    Article  MATH  Google Scholar 

  11. Chen, F.: Introduction to Plasma Physics and Controlled Fusion. Springer, New York (1984)

    Book  Google Scholar 

  12. Chen, G.Q., Levermore, C.D., Liu, T.P.: Hyperbolic conservation laws with stiff relaxation and entropy. Commun. Pure Appl. Math. 47, 787–830 (1994)

  13. Czarny, O., Huysmans, G.: Bézier surfaces and finite elements for MHD simulations. JCP 227, 7423–7445 (2008)

    Article  ADS  MATH  Google Scholar 

  14. Czarny, O., Huysmans, G.: MHD stability in X-point geometry: simulation of ELMs. Nucl. Fusion 47, 659–666 (2007)

    Article  ADS  Google Scholar 

  15. Dafermos, C.: Quasilinear hyperbolic systems with involutions. Arch. Ration. Mech. Anal. 94, 373 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Delcroix, J.L., Bers, A.: Physique des Plasmas. CNRS, Paris (1994)

    Google Scholar 

  17. Després, B.: A geometrical approach to nonconservative shocks and elastoplastic shocks. Arch. Ration. Mech. Anal. 186, 275–308 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Després, B., Malapaka, S.K., Sart, R.: Numerical simulations of a new Generalized reduced resistive MHD model for current hole. Int. J. Numer. Methods Fluids 74(4), 231–249 (2013)

  19. Després, B., Sart, R.: Reduced resistive MHD in Tokamaks with general density, M2AN online (2012)

  20. Dirac, P.: Lecture Notes on Quantum Physics. Dover, New York (2001)

    Google Scholar 

  21. Drake, J.F., Antonsen, T.M.: Nonlinear reduced fluid equations for toroidal plasmas. Phys. Fluids 27, 898–908 (1984)

    Article  ADS  MATH  Google Scholar 

  22. Feireisl Eduard, E.: Mathematical analysis of fluids in motion: from well-posedness to model reduction. Rev. Mat. Complut. 26(2), 299–340 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Franck, E., Hölzl, M., Lessig, A., Sonnendrücker, E.: Energy conservation and numerical stability for the reduced MHD models of the non-linear JOREK code. ESAIM: M2AN 49(5) (2015)

  24. Freidberg, J.: Plasma Physics and Energy Fusion. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  25. Fujita, T.: Tokamak equilibria with nearly zero central current: the current hole (review article). Nucl. Fusion 50(11), 13001 (2010)

  26. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  27. Grad, H., Rubin, H.: Hydromagnetic equilibria and force-free fields. J. Nucl. Energy 7(3–4), 284–285 (1958)

    Google Scholar 

  28. Goedbloed, J.P., Beliën, A.J.C., van der Holst, B., Keppens, R.: Transsonic instabilities in tokamaks and astrophysical accretion flows. AIP Conf. Proc. 703(1), p42 (2004)

    Article  ADS  Google Scholar 

  29. Guazzotto, L., Betti, R.: Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal. Phys. Plasmas 18, 092509 (2011)

    Article  ADS  Google Scholar 

  30. Guillard, H.: The mathematical theory of reduced MHD models for fusion plasmas. Inria research report 2015. https://arxiv.org/pdf/1506.01843.pdf

  31. Hölzl, M., Günter, S., Wenninger, R.P., Mller, W.-C., Huysmans, G.T.A., Lackner, K., Krebs, I., The ASDEX Upgrade Team: Reduced-MHD simulations of toroidally and poloidally localized ELMs. Online arxiv http://arxiv.org/abs/1201.5765 (2012)

  32. Jardin, S.: Computational Methods in Plasma Physics. Chapman & Hall/CRC Computational Science, London (2010)

    Book  MATH  Google Scholar 

  33. Kruger, S.E.: Generalized reduced magnetohydrodynamic equations. Master report, University of Wisconsin, Madison (1999)

  34. Kruger, S.E., Hegna, C.C., Callen, J.D.: Generalized reduced magnetohydrodynamic equations. Phys. Plasmas 5(12), 4169 (1998)

  35. Lax, P.D.: Hyperbolic Systems of Conservation Laws and the Theory of Shock Waves. SIAM, Philadelphia (1973)

    Book  MATH  Google Scholar 

  36. Lazzaro, E., Comisso, L., Del Pra, M.: Nonlinear and diamagnetic effects in a neoclassical model of magnetic reconnection. In: AIP Conference on Proceedings 1392, pp. 45–54, IFP-CNR-Chalmers Workshop on Nonlinear Phenomena in Fusion Plasmas (2011)

  37. Lions, P.L.: Mathematical Topics in Fluid Dynamics. Incompressible Models, vol. 1. Oxford Science Publication, Oxford (1996)

    MATH  Google Scholar 

  38. Lütjens, H., Luciani, J.-F.: The XTOR code for nonlinear 3D simulations of MHD instabilities in tokamak plasmas. J. Comput. Phys. 227(14), 6944–6966 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Lütjens, H., Luciani, J.-F.: XTOR-2F: A fully implicit NewtonKrylov solver applied to nonlinear 3D extended MHD in tokamaks. J. Comput. Phys. 229(21), 8130–8143 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Muller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer Tracts of Natural Philosophy, vol. 37, 2nd edn. Springer, New York (1998)

    Book  Google Scholar 

  41. Nkonga, B.: Numerical approximations: finite elements for MHD modeling. In: 4th AE-Fusion Summer School on Numerical Modelling for Fusion, Max-Planck-Institut fur Plasmaphysik (2012)

  42. Obrejan, K.: Master report (2012)

  43. Philip, B., Pernice, M., Chacon, L.: Solution of reduced resistive magnetohydrodynamics using implicit adaptive mesh refinement. In: Proceedings of the 16th International Conference on Domain Decomposition Methods (2007)

  44. Poette, G., Després, B., Lucor, D.: Uncertainty quantification for systems of conservation laws original. J. Comput. Phys. 228(7), 2443–2467 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Poette, G., Després, B., Lucor, D.: Review of robust uncertainty propagation in systems of conservation laws with the entropy closure method. In: LNSCE (2012)

  46. Pamela, S., Huysmans, G.T.A.: Equilibrium flows in non-linear MHD simulations of X-point plasmas, theory of fusion plasmas. In: AIP Conference Proceedings, vol. 1069, pp. 318–324 (2008)

  47. Pataki, A., Cerfon, A.J., Freidberg, J.P., Greengard, L., ONeil, M.: A fast high-order solver for the Grad–Shafranov equation. Arxiv online arXiv:1210.2113v1 (2012)

  48. Romanelli, F., Zonca, F.: A reduced set of equations for resistive fluid turbulence in toroidal systems. Plasma Phys. Control. Fusion 31(9), 1365–1379 (1989)

    Article  ADS  Google Scholar 

  49. Rosenbluth, M.N., Monticello, D.A., Strauss, H.R., White, R.B.: Dynamics of high \(\beta \) plasmas. Physics of Fluids 19, 1987 (1976)

    Article  ADS  Google Scholar 

  50. Ruggeri, T., Strumia, A.: Main field and convex covariant density for quasi-linear hyperbolic systems. Relat. Fluid Dyn. Ann. Inst. H. Poincare Sect. A 34, 65 (1981)

  51. Strauss, H.R.: Dynamics of high \(\beta \) plasmas. Phys. Fluids 20, 1354–1360 (1977)

    Article  ADS  Google Scholar 

  52. Strauss, H.R.: Nonlinear three-dimensional magnetohydrodynamics of noncircular tokamaks. Phys. Fluids 19, 134–140 (1976)

    Article  ADS  Google Scholar 

  53. Strauss, H.R.: Reduced MHD for mirror machines. Nucl. Fusion 22, 893 (1982)

    Article  Google Scholar 

  54. Taniut, T., Moriguchi, H., Ishii, Y., Watanabe, K., Wakatani, M.: Solitary and shock structures induced by poloidal flow in tokamaks. J. Phys. Soc. Jpn. 61, 568–586 (1992)

    Article  ADS  Google Scholar 

  55. Vlad, G., Bracco, G., Buratti, P.: Scaling of the sawtooth repetition time from simulations with reduced MHD equations, and comparison with experiments in the Frascati Tokamak. Nucl. Fusion 31, 1536 (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Després.

Additional information

Communicated by E. Feireisl

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Després, B., Sart, R. Navier–Stokes Hierarchies of Reduced MHD Models in Tokamak Geometry. J. Math. Fluid Mech. 20, 329–357 (2018). https://doi.org/10.1007/s00021-017-0323-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-017-0323-8

Navigation