Navier–Stokes Hierarchies of Reduced MHD Models in Tokamak Geometry

Article

Abstract

We study the closure of reduced MHD models, such as the ones which are used in the modeling of Tokamaks and ITER, see Franck et al. (ESAIM: M2AN 49(5), 2015) and Guillard (2015) and references therein. We show how to modify the entropy moment methods to obtain a hierarchy of Navier–Stokes like models in potential formulation with a correct energy balance. Our procedure is well adapted to the complicated geometry of the torus. We obtain mainly two original results. One is a comparison principle between all these models: it explains that the dynamics of a reduced model is a lower bound of the dynamics of the initial model. The other one the existence of a weak solution to some of these complicate models adapted to the Tokamak geometry.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allaire, G.: Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation (Numerical Mathematics and Scientific Computation Series). Oxford University Press, Oxford (2007)MATHGoogle Scholar
  2. 2.
    Biskamp, D.: Nonlinear Magnetohydrodynamics. Cambridge University Press, Cambridge (1992)Google Scholar
  3. 3.
    Blum, J.: Numerical Simulation and Optimal Control in Plasma Physics, with Application to Tokamaks, Wiley/Gauthier-Villard Series in Modern Applied Mathematics (1989)Google Scholar
  4. 4.
    Boillat, G.: Sur l’existence et la recherche d’équation de conservation supplémentaires pour les systèmes hyperboliques. C. R. Acad. Sci. Paris, A 278, 909 (1974)Google Scholar
  5. 5.
    Boillat, G.: Involutions des systèmes conservatifs. C. R. Acad. Sci. Paris A 307, 891 (1988)MathSciNetMATHGoogle Scholar
  6. 6.
    Boillat, G., Ruggeri, T.: Wave and shock velocities in relativistic magnetohydrodynamics compared with the speed of light. Contin. Mech. Thermodyn. 1, 47 (1989)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Boillat, G., Ruggeri, T.: Hyperbolic principal subsystems: entropy convexity and subcharacteristic conditions. Arch. Ration. Mech. Anal. 137(4), 305–320 (1997)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Boillat, G., Ruggeri, T.: Moment equations in the kinetic theory of gases and wave velocities. Contin. Mech. Thermodyn. 9, 205–212 (1997)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Breslau, J., Ferraro, N., Jardin, S.: Some properties of the M3D-C1 form of the 3D magnetohydrodynamics equations. Phys. Plasmas 16, 092503 (2009)Google Scholar
  10. 10.
    Chacon, L., Knoll, D.A., Finn, J.M.: An implicit, nonlinear reduced resistive MHD solver. J. Comput. Phys. 178(1), 1536 (2002)CrossRefMATHGoogle Scholar
  11. 11.
    Chen, F.: Introduction to Plasma Physics and Controlled Fusion. Springer, New York (1984)CrossRefGoogle Scholar
  12. 12.
    Chen, G.Q., Levermore, C.D., Liu, T.P.: Hyperbolic conservation laws with stiff relaxation and entropy. Commun. Pure Appl. Math. 47, 787–830 (1994)Google Scholar
  13. 13.
    Czarny, O., Huysmans, G.: Bézier surfaces and finite elements for MHD simulations. JCP 227, 7423–7445 (2008)ADSMATHGoogle Scholar
  14. 14.
    Czarny, O., Huysmans, G.: MHD stability in X-point geometry: simulation of ELMs. Nucl. Fusion 47, 659–666 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Dafermos, C.: Quasilinear hyperbolic systems with involutions. Arch. Ration. Mech. Anal. 94, 373 (1986)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Delcroix, J.L., Bers, A.: Physique des Plasmas. CNRS, Paris (1994)Google Scholar
  17. 17.
    Després, B.: A geometrical approach to nonconservative shocks and elastoplastic shocks. Arch. Ration. Mech. Anal. 186, 275–308 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Després, B., Malapaka, S.K., Sart, R.: Numerical simulations of a new Generalized reduced resistive MHD model for current hole. Int. J. Numer. Methods Fluids 74(4), 231–249 (2013)Google Scholar
  19. 19.
    Després, B., Sart, R.: Reduced resistive MHD in Tokamaks with general density, M2AN online (2012)Google Scholar
  20. 20.
    Dirac, P.: Lecture Notes on Quantum Physics. Dover, New York (2001)Google Scholar
  21. 21.
    Drake, J.F., Antonsen, T.M.: Nonlinear reduced fluid equations for toroidal plasmas. Phys. Fluids 27, 898–908 (1984)ADSCrossRefMATHGoogle Scholar
  22. 22.
    Feireisl Eduard, E.: Mathematical analysis of fluids in motion: from well-posedness to model reduction. Rev. Mat. Complut. 26(2), 299–340 (2013)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Franck, E., Hölzl, M., Lessig, A., Sonnendrücker, E.: Energy conservation and numerical stability for the reduced MHD models of the non-linear JOREK code. ESAIM: M2AN 49(5) (2015)Google Scholar
  24. 24.
    Freidberg, J.: Plasma Physics and Energy Fusion. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  25. 25.
    Fujita, T.: Tokamak equilibria with nearly zero central current: the current hole (review article). Nucl. Fusion 50(11), 13001 (2010)Google Scholar
  26. 26.
    Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331 (1949)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Grad, H., Rubin, H.: Hydromagnetic equilibria and force-free fields. J. Nucl. Energy 7(3–4), 284–285 (1958)Google Scholar
  28. 28.
    Goedbloed, J.P., Beliën, A.J.C., van der Holst, B., Keppens, R.: Transsonic instabilities in tokamaks and astrophysical accretion flows. AIP Conf. Proc. 703(1), p42 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Guazzotto, L., Betti, R.: Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal. Phys. Plasmas 18, 092509 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    Guillard, H.: The mathematical theory of reduced MHD models for fusion plasmas. Inria research report 2015. https://arxiv.org/pdf/1506.01843.pdf
  31. 31.
    Hölzl, M., Günter, S., Wenninger, R.P., Mller, W.-C., Huysmans, G.T.A., Lackner, K., Krebs, I., The ASDEX Upgrade Team: Reduced-MHD simulations of toroidally and poloidally localized ELMs. Online arxiv http://arxiv.org/abs/1201.5765 (2012)
  32. 32.
    Jardin, S.: Computational Methods in Plasma Physics. Chapman & Hall/CRC Computational Science, London (2010)CrossRefMATHGoogle Scholar
  33. 33.
    Kruger, S.E.: Generalized reduced magnetohydrodynamic equations. Master report, University of Wisconsin, Madison (1999)Google Scholar
  34. 34.
    Kruger, S.E., Hegna, C.C., Callen, J.D.: Generalized reduced magnetohydrodynamic equations. Phys. Plasmas 5(12), 4169 (1998)Google Scholar
  35. 35.
    Lax, P.D.: Hyperbolic Systems of Conservation Laws and the Theory of Shock Waves. SIAM, Philadelphia (1973)CrossRefMATHGoogle Scholar
  36. 36.
    Lazzaro, E., Comisso, L., Del Pra, M.: Nonlinear and diamagnetic effects in a neoclassical model of magnetic reconnection. In: AIP Conference on Proceedings 1392, pp. 45–54, IFP-CNR-Chalmers Workshop on Nonlinear Phenomena in Fusion Plasmas (2011)Google Scholar
  37. 37.
    Lions, P.L.: Mathematical Topics in Fluid Dynamics. Incompressible Models, vol. 1. Oxford Science Publication, Oxford (1996)MATHGoogle Scholar
  38. 38.
    Lütjens, H., Luciani, J.-F.: The XTOR code for nonlinear 3D simulations of MHD instabilities in tokamak plasmas. J. Comput. Phys. 227(14), 6944–6966 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Lütjens, H., Luciani, J.-F.: XTOR-2F: A fully implicit NewtonKrylov solver applied to nonlinear 3D extended MHD in tokamaks. J. Comput. Phys. 229(21), 8130–8143 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Muller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer Tracts of Natural Philosophy, vol. 37, 2nd edn. Springer, New York (1998)CrossRefGoogle Scholar
  41. 41.
    Nkonga, B.: Numerical approximations: finite elements for MHD modeling. In: 4th AE-Fusion Summer School on Numerical Modelling for Fusion, Max-Planck-Institut fur Plasmaphysik (2012)Google Scholar
  42. 42.
    Obrejan, K.: Master report (2012)Google Scholar
  43. 43.
    Philip, B., Pernice, M., Chacon, L.: Solution of reduced resistive magnetohydrodynamics using implicit adaptive mesh refinement. In: Proceedings of the 16th International Conference on Domain Decomposition Methods (2007)Google Scholar
  44. 44.
    Poette, G., Després, B., Lucor, D.: Uncertainty quantification for systems of conservation laws original. J. Comput. Phys. 228(7), 2443–2467 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Poette, G., Després, B., Lucor, D.: Review of robust uncertainty propagation in systems of conservation laws with the entropy closure method. In: LNSCE (2012)Google Scholar
  46. 46.
    Pamela, S., Huysmans, G.T.A.: Equilibrium flows in non-linear MHD simulations of X-point plasmas, theory of fusion plasmas. In: AIP Conference Proceedings, vol. 1069, pp. 318–324 (2008)Google Scholar
  47. 47.
    Pataki, A., Cerfon, A.J., Freidberg, J.P., Greengard, L., ONeil, M.: A fast high-order solver for the Grad–Shafranov equation. Arxiv online arXiv:1210.2113v1 (2012)
  48. 48.
    Romanelli, F., Zonca, F.: A reduced set of equations for resistive fluid turbulence in toroidal systems. Plasma Phys. Control. Fusion 31(9), 1365–1379 (1989)ADSCrossRefGoogle Scholar
  49. 49.
    Rosenbluth, M.N., Monticello, D.A., Strauss, H.R., White, R.B.: Dynamics of high \(\beta \) plasmas. Physics of Fluids 19, 1987 (1976)ADSCrossRefGoogle Scholar
  50. 50.
    Ruggeri, T., Strumia, A.: Main field and convex covariant density for quasi-linear hyperbolic systems. Relat. Fluid Dyn. Ann. Inst. H. Poincare Sect. A 34, 65 (1981)Google Scholar
  51. 51.
    Strauss, H.R.: Dynamics of high \(\beta \) plasmas. Phys. Fluids 20, 1354–1360 (1977)ADSCrossRefGoogle Scholar
  52. 52.
    Strauss, H.R.: Nonlinear three-dimensional magnetohydrodynamics of noncircular tokamaks. Phys. Fluids 19, 134–140 (1976)ADSCrossRefGoogle Scholar
  53. 53.
    Strauss, H.R.: Reduced MHD for mirror machines. Nucl. Fusion 22, 893 (1982)CrossRefGoogle Scholar
  54. 54.
    Taniut, T., Moriguchi, H., Ishii, Y., Watanabe, K., Wakatani, M.: Solitary and shock structures induced by poloidal flow in tokamaks. J. Phys. Soc. Jpn. 61, 568–586 (1992)ADSCrossRefGoogle Scholar
  55. 55.
    Vlad, G., Bracco, G., Buratti, P.: Scaling of the sawtooth repetition time from simulations with reduced MHD equations, and comparison with experiments in the Frascati Tokamak. Nucl. Fusion 31, 1536 (1991)Google Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Sorbonne Universités, UPMC Univ Paris 06 UMR 7598 Laboratoire Jacques-Louis LionsParisFrance
  2. 2.Léonard de Vinci Pole Universitaire De Vinci Research Center (DVRC)Paris La DéfenseFrance

Personalised recommendations