Skip to main content
Log in

Some remarks on the Lehmer conjecture

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

In 1933, Lehmer exhibited the polynomial

$$\begin{aligned} L(z)=z^{10} + z^9 - z^7 - z^6 - z^5 - z^4 - z^3 + z + 1 \end{aligned}$$

with Mahler measure \(\mu _0>1\). Then he asked if \(\mu _0\) is the smallest Mahler measure, not 1. This question became known as the Lehmer conjecture and it was apparently solved in the positive, while this paper was in preparation [19]. In this paper we consider those polynomials of the form \(\chi _A\), that is, Coxeter polynomials of a finite dimensional algebra A (for instance \(L(z)=\chi _{\mathbb {E}_{10}}\)). A polynomial in \(\mathbb {Z}[T]\) which is either cyclotomic or with Mahler measure \(\ge \mu _0\) is called a Lehmer polynomial. We give some necessary conditions for a polynomial to be Lehmer. We show that A being a tree algebra is a sufficient condition for \(\chi _A\) to be Lehmer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391–401.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Happel, Hochschild cohomology of finite dimensional algebras, In: Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année, 108–126, Lecture Notes in Math, 1404, Springer-Verlag, Berlin, 1989.

  3. D. Happel, The trace of the Coxeter matrix and the Hochschild cohomology, Linear Algebra Appl. 258 (1997), 169–177

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Kronecker, Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten, J. Reine Angew. Math. (1857), 173–175. Oeuvres I, 105–108.

  5. D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. (2) 34 (1933), 461–479.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Lenzing, Coxeter transformations associated with finite-dimensional algebras, In: Computational Methods for Representations of Groups and Algebras, 287–308, Progr. Math., 173, Birkhäuser, Basel, 1999.

  7. H. Lenzing and J.A. de la Peña, Spectral analysis of finite dimensional algebras and singularities, In: Trends in Representation Theory of Algebras and Related Topics, A. Skowroński (Ed.), 547–588, EMS Publishing House, Zürich, 2008.

  8. H. Lenzing and J.A. de la Peña, Extended canonical algebras and Fuchsian singularities, Math. Z. 268 (2011), 143–167.

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Mahler, An application of Jensen formula to polynomials, Mathematika 7 (1960), 98–100.

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Mahler, Lectures on Transcendental Number Theory, Lecture Notes in Mathematics, 546, Springer-Verlag, Berlin-New York, 1976.

  11. M. Mossinghoff, Polynomials with small Mahler measure, Math. Comp. 67 (1998), 1697–1705, S11–S14.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Mossinghoff Home Page, http://www.cecm.sfu.ca/mjm/Lehmer.

  13. J.A. de la Peña, Coxeter transformations and the representation theory of algebras, In: Finite Dimensional Algebras and Related Topics, (Ottawa, ON, 1992), 223–253, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 424, Kluwer Acad. Publ., Dordrecht, 1994.

  14. J.A. de la Peña, On the Mahler measure of the Coxeter polynomial of an algebra, Adv. Math. 270 (2015), 375–399.

    Article  MathSciNet  MATH  Google Scholar 

  15. J.A. de la Peña, On the trace of the Coxeter polynomial of an algebra, Linear Algebra Appl. 538 (2018), 103–115.

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Prasolov, Polynomials, Algorithms and Computation in Mathematics, 11, Springer, Berlin, 2004.

  17. A. Schinzel and H. Zassenhaus, A refinement of two theorems of Kronecker, Michigan Math. J. 12 (1965), 81–85.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Smyth, On the product of the conjugates outside the unit circle of an algebraic integer, Bull. London Math. Soc. 3 (1971), 169–175.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. L. Verger-Gaugry, A proof of the conjecture of Lehmer and of the conjecture of Schinzel–Zassenhaus, Preprint, arXiv:1709.03771.

  20. Ch. Xi, On wild hereditary algebras with small growth numbers, Comm. Algebra 18 (1990), 3413–3422.

    Article  MathSciNet  MATH  Google Scholar 

  21. F. Zhang, Matrix Theory. Basic Results and Techniques, Universitext, Springer–Verlag, New York, 1999.

Download references

Acknowledgements

The research for this paper was initiated at CIMAT, Guanajuato in the summer of 2015 and concluded at the Instituto de Matemáticas, México in 2017. I take pleasure to thank both institutions. I thank also an anonymous referee for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. de la Peña.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Peña, J.A. Some remarks on the Lehmer conjecture. Arch. Math. 111, 33–42 (2018). https://doi.org/10.1007/s00013-018-1165-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-018-1165-1

Keywords

Mathematics Subject Classification

Navigation