Advertisement

Archiv der Mathematik

, Volume 106, Issue 2, pp 165–173 | Cite as

Heat kernel approach for sup-norm bounds for cusp forms of integral and half-integral weight

  • Anilatmaja Aryasomayajula
Article

Abstract

In this article, using the heat kernel approach from Bouche (Asymptotic results for Hermitian line bundles over complex manifolds: The heat kernel approach, Higher-dimensional complex varieties, pp 67–81, de Gruyter, Berlin, 1996), we derive sup-norm bounds for cusp forms of integral and half-integral weight. Let \({\Gamma\subset \mathrm{PSL}_{2}(\mathbb{R})}\) be a cocompact Fuchsian subgroup of first kind. For \({k \in \frac{1}{2} \mathbb{Z}}\) (or \({k \in 2\mathbb{Z}}\)), let \({S^{k}_{\nu}(\Gamma)}\) denote the complex vector space of cusp forms of weight-k and nebentypus \({\nu^{2k}}\) (\({\nu^{k\slash 2}}\), if \({k \in 2\mathbb{Z}}\)) with respect to \({\Gamma}\), where \({\nu}\) is a unitary character. Let \({\lbrace f_{1},\ldots,f_{j_{k}} \rbrace}\) denote an orthonormal basis of \({S^{k}_{\nu}(\Gamma)}\). In this article, we show that as \({k \rightarrow \infty,}\) the sup-norm for \({\sum_{i=1}^{j_{k}}y^{k}|f_{i}(z)|^{2}}\) is bounded by O(k), where the implied constant is independent of \({\Gamma}\). Furthermore, using results from Berman (Math. Z. 248:325–344, 2004), we extend these results to the case when \({\Gamma}\) is cofinite.

Keywords

Cusp forms Heat kernels Bergman kernels 

Mathematics Subject Classification

30F30 30F35 30F45 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbes A., Ullmo E.: Comparison des metriques d’Arakelov et de Poincare sur X 0(N). Duke Math. J. 80, 295–307 (1995)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Berman R. J.: Bergman kernels and local holomorphic Morse inequalities. Math. Z. 248, 325–344 (2004)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    T. Bouche, Asymptotic results for Hermitian line bundles over complex manifolds: The heat kernel approach, Higher-dimensional complex varieties, pp. 67–81, de Gruyter, Berlin (1996).Google Scholar
  4. 4.
    H. Cohen and J. Oesterlé, Dimensions des espaces de formes modulaires, Modular functions of one variable VI, pp. 69–78, Lecture Notes in Math. 627, Springer, Berlin (1977).Google Scholar
  5. 5.
    Harcos G., Templier N.: On the sup-norm of Maass cusp forms of large level. III. Math. Ann. 356, 209–216 (2013)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Kiral E. M.: Bounds on Sup-norms of Half Integral Weight Modular Forms. Acta Arithmetica 165, 385–399 (2014)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Holowinsky R., Soundararajan K.: Mäss Equidistribution for Hecke Eigenforms. Annals of Mathematics 172, 1517–1528 (2010)MATHMathSciNetGoogle Scholar
  8. 8.
    J. Friedman, J. Jorgenson, and J. Kramer, Uniform sup-norm bounds on average for cusp forms of higher weights, arXiv preprint arXiv:1305.1348 (2013).
  9. 9.
    Jorgenson J., Kramer J.: Bounding the sup-norm of automorphic forms. Geom. Funct. Anal. 14, 1267–1277 (2004)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    R. S. Steiner, Uniform bounds on sup-norms of holomorphic forms of real weight, Int. J. Number Theory, doi: 10.1142/S1793042116500718.

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of HyderabadHyderabadIndia

Personalised recommendations