Skip to main content
Log in

Heat kernel approach for sup-norm bounds for cusp forms of integral and half-integral weight

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

In this article, using the heat kernel approach from Bouche (Asymptotic results for Hermitian line bundles over complex manifolds: The heat kernel approach, Higher-dimensional complex varieties, pp 67–81, de Gruyter, Berlin, 1996), we derive sup-norm bounds for cusp forms of integral and half-integral weight. Let \({\Gamma\subset \mathrm{PSL}_{2}(\mathbb{R})}\) be a cocompact Fuchsian subgroup of first kind. For \({k \in \frac{1}{2} \mathbb{Z}}\) (or \({k \in 2\mathbb{Z}}\)), let \({S^{k}_{\nu}(\Gamma)}\) denote the complex vector space of cusp forms of weight-k and nebentypus \({\nu^{2k}}\) (\({\nu^{k\slash 2}}\), if \({k \in 2\mathbb{Z}}\)) with respect to \({\Gamma}\), where \({\nu}\) is a unitary character. Let \({\lbrace f_{1},\ldots,f_{j_{k}} \rbrace}\) denote an orthonormal basis of \({S^{k}_{\nu}(\Gamma)}\). In this article, we show that as \({k \rightarrow \infty,}\) the sup-norm for \({\sum_{i=1}^{j_{k}}y^{k}|f_{i}(z)|^{2}}\) is bounded by O(k), where the implied constant is independent of \({\Gamma}\). Furthermore, using results from Berman (Math. Z. 248:325–344, 2004), we extend these results to the case when \({\Gamma}\) is cofinite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbes A., Ullmo E.: Comparison des metriques d’Arakelov et de Poincare sur X 0(N). Duke Math. J. 80, 295–307 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berman R. J.: Bergman kernels and local holomorphic Morse inequalities. Math. Z. 248, 325–344 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. T. Bouche, Asymptotic results for Hermitian line bundles over complex manifolds: The heat kernel approach, Higher-dimensional complex varieties, pp. 67–81, de Gruyter, Berlin (1996).

  4. H. Cohen and J. Oesterlé, Dimensions des espaces de formes modulaires, Modular functions of one variable VI, pp. 69–78, Lecture Notes in Math. 627, Springer, Berlin (1977).

  5. Harcos G., Templier N.: On the sup-norm of Maass cusp forms of large level. III. Math. Ann. 356, 209–216 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kiral E. M.: Bounds on Sup-norms of Half Integral Weight Modular Forms. Acta Arithmetica 165, 385–399 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Holowinsky R., Soundararajan K.: Mäss Equidistribution for Hecke Eigenforms. Annals of Mathematics 172, 1517–1528 (2010)

    MATH  MathSciNet  Google Scholar 

  8. J. Friedman, J. Jorgenson, and J. Kramer, Uniform sup-norm bounds on average for cusp forms of higher weights, arXiv preprint arXiv:1305.1348 (2013).

  9. Jorgenson J., Kramer J.: Bounding the sup-norm of automorphic forms. Geom. Funct. Anal. 14, 1267–1277 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. R. S. Steiner, Uniform bounds on sup-norms of holomorphic forms of real weight, Int. J. Number Theory, doi:10.1142/S1793042116500718.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anilatmaja Aryasomayajula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aryasomayajula, A. Heat kernel approach for sup-norm bounds for cusp forms of integral and half-integral weight. Arch. Math. 106, 165–173 (2016). https://doi.org/10.1007/s00013-015-0855-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-015-0855-1

Mathematics Subject Classification

Keywords

Navigation