Archiv der Mathematik

, Volume 106, Issue 1, pp 5–14 | Cite as

Endomorphism rings of some Young modules



Let \({\Sigma_r}\) be the symmetric group acting on \({r}\) letters, \({K}\) be a field of characteristic 2, and \({\lambda}\) and \({\mu}\) be partitions of \({r}\) in at most two parts. Denote the permutation module corresponding to the Young subgroup \({\Sigma_\lambda}\), in \({\Sigma_r}\), by \({M^\lambda}\), and the indecomposable Young module by \({Y^\mu}\). We give an explicit presentation of the endomorphism algebra \({{\rm End}_{k[\Sigma_r]}(Y^\mu)}\) using the idempotents found by Doty et al. (J Algebra 307(1):377–396, 2007).

Mathematics Subject Classification

20C30 16S50 


Representation theory Centraliser algebras Permutation modules Schur algebras \({p}\)-Kostka umbers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Doty S., Erdmann K., Henke A.: Endomorphism rings of permutation modules over maximal Young subgroups. Journal of Algebra, 307(1), 377–396 (2007)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    A. Henke. On p-Kostka numbers and Young modules, European Journal of Combinatorics, 26(6) (2005), 923–942.CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    K. Erdmann and A. Henke, On Schur algebras, Ringel duality and symmetric groups, Journal of Pure and Applied Algebra, 169 (2002), 175–199.CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    S. Doty and A. Giaquinto, Presenting Schur algebras as quotients of the universal enveloping algebra of \({\mathfrak{gl}_2}\), Algebras and Representation Theory, 7(1) (2004), 1–17.CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  1. 1.Royal HollowayUniversity of LondonEghamUK

Personalised recommendations