Skip to main content
Log in

Octonions, Exceptional Jordan Algebra and The Role of The Group \(F_4\) in Particle Physics

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

Normed division rings are reviewed in the more general framework of composition algebras that include the split (indefinite metric) case. The Jordan–von Neumann–Wigner classification of finite euclidean Jordan algebras is outlined with special attention to the 27 dimensional exceptional Jordan algebra \({\mathcal {J}}\). The automorphism group \(F_4\) of \({\mathcal {J}}\) and its maximal Borel-de Siebenthal subgroups \(\frac{SU(3)\times SU(3)}{{{\mathbb {Z}}_3}}\) and Spin(9) are studied in detail and applied to the classification of fundamental fermions and gauge bosons. Their intersection in \(F_4\) is demonstrated to coincide with the gauge group \(S(U(2)\times U(3))\) of the Standard Model of particle physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, J.F.: Lectures on exceptional lie groups. In: Mahmud, Z., Mimira, M. (eds.) Univ. Chicago Press, Chicago (1996)

  2. Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topology 3(Suppl. 1), 3–38 (1964)

    Article  MathSciNet  Google Scholar 

  3. Baez, J.: The octonions, Bull. Amer. Math. Soc.39:2 (2002) 145-205, Errata, ibid.42 (2005) 213; arXiv:math/0105155v4 [math.RA]

  4. Baez, J.C.: On quaternions and octonions: their geometry, arithmetic, and symmetry by john h. conway and derek a. smith. Bull. Amer. Math. Soc. 42, 229–243 (2005)

    Article  Google Scholar 

  5. Baez, J.C.: Division algebras and quantum theory. Found. Phys. 42, 819–855 (2012). arXiv:1101.5690v3 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  6. Baez, J., Huerta, J.: The algebra of grand unified theory. Bull. Amer. Math. Soc. 47(3), 483–552 (2010). arXiv:0904.1556v2 [hep-th]

    Article  MathSciNet  Google Scholar 

  7. Barton, C.H., Sudbery, A.: Magic squares and matrix models of Lie algebras. Adv. Math. 180, 596–647 (2003). arXiv:math/0203010v2

    Article  MathSciNet  Google Scholar 

  8. Borel, A., de Siebenthal, J.: Les sous-groupes fermés de rang maximum des groupes de Lie clos. Comm. Math. Helv. 23, 200–221 (1949)

    Article  Google Scholar 

  9. Boyle, L., Farnsworth, S.: A new algebraic standard model of particle physics, arXv:1604.00847 [hep-th]; -. Rethinking Connes’ approach to the standard model of particle physics via non-commutative geometry, New J. Phys.17 (2015) 023021; arXiv:1408.5367 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  10. Carotenuto, A., Dabrowski, L., Dubois-Violette, M.: Differential calculus on Jordan algebras and Jordan modules, arXiv:1803.08373 [math.QA]

  11. Cartan, Élie: Le principe de dualité et la théorie des groupes simple et semisimple. Bull. Sci. Math. 49, 361–374 (1925)

    MATH  Google Scholar 

  12. Catto, S., Gürcan, Y., Khalfan, A., Kurt, L.: Unifying ancient and modern geometries through octonions. J. Phys. Conf. Ser 670, 012016 (2016)

    Article  Google Scholar 

  13. Chamseddine, A., Connes, A., van Suijlekom, W.D.: Grand unification in the spectral Pati–Salam model. JHEP 1511, 011 (2015). arXiv:1507.08161 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  14. Connes, A., Lott, J.: Particle models and noncommutative geometry. Nucl. Phys. Proc. Suppl. B 18, 29–47 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Conway, J.H., Smith, D.A.: On Quaternions and Octonions: Their Geometry, Arithmetic and Symmetry A.K. Peters (2003) 1–143

  16. Corrigan, E., Hollowood, T.J.: The exceptional Jordan algebra and the superstring. Commun. Math. Phys. 122, 393–410 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  17. Dickson, L.E.: On quaternions and their generalization and the history of the eight square theorem. Ann. Math. 20, 155–171 (1919)

    Article  MathSciNet  Google Scholar 

  18. Dixon, G.M.: Division algebras: family replication. J. Math. Phys. 45, 3878 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  19. Dixon, G.M.: Division algebras; spinors; idempotents; the algebraic structure of reality, arXiv:1012.1304 [hep.th]

  20. Dixon, G.M.: Seeable matter; unseeable antimatter. Comment. Math. Univ. Carolin. 55(3), 381–386 (2014). arXiv:1407.4818 [physics.gen-ph]

    MathSciNet  MATH  Google Scholar 

  21. Dubois-Violette, M.: Exceptional quantum geometry and particle physics. Nucl. Phys. B 912, 426–444 (2016). arXiv:1604.01247

    Article  ADS  MathSciNet  Google Scholar 

  22. Dubois-Violette, M., Kerner, R., Madore, J.: Gauge bosons in a non-commutative geometry. Phys. Lett. B 217, 485–488 (1989)

    Article  ADS  Google Scholar 

  23. Faraut, J., Koranyi, A.: Analysis on symmetric cones, p. xii + 382. Oxford Univ. Press, Oxford (1994)

    MATH  Google Scholar 

  24. Freudenthal, H.: Lie groups in the foundation of geometry. Adv. Math. 1, 145–190 (1964)

    Article  MathSciNet  Google Scholar 

  25. Furey, C.: Standard model physics from an algebra? arXiv:1611.09182 [hep-th]

  26. Gross, K.I.: Book Review. Bull. AMS 35, 77–86 (1998)

    Article  Google Scholar 

  27. Goddard, P., Nahm, W., Olive, D.I., Ruegg, H., Schwimmer, A.: Fermions and octonions. Commun. Math. Phys. 112, 385–408 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  28. Günaydin, M., Gürsey, F.: Quark structure and octonions. J. Math. Phys. 14(11), 1651–1667 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  29. Günaydin, M., Pirron, C., Ruegg, H.: Moufang plane and octonionic quantum mechanics. Commun. Math. Phys. 61, 69–85 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  30. Gürsey, F.: Octonionic structures in particle physics. Group Theor. Methods Phys. 94, 508–521 (1979). Lecture Notes in Physics, Springer

    Article  ADS  Google Scholar 

  31. Gürsey, F., Tze, C.-H.: The role of division Jordan and related algebras in particle physics. World Scintific, Singapore (1996)

    Book  Google Scholar 

  32. Jordan, P., Neumann, J.v, Wigner, E.: On an algebraic generalization of the quantum mechanical formalism. Ann. of Math. 36(2), 29–64 (1934)

    Article  Google Scholar 

  33. Koecher, M.: The Minnesota Notes on Jordan Algebras and Their Applications, Lecture Notes in Math. 1710 ed. by A. Krieg, S. Walcher, Springer, Berlin et al. (1999)

  34. Lizzi, F.: Noncommutattive geometry and particle physics, Proc.of Sci. Corfu Summer Institute 2017; arXiv:1805.00411 [hep-th]

  35. Loumesto, P.: Clifford Algebras and Spinors, second edition, London Math. Soc. Lecture Notes Series 286, Cambridge Univ. Press, (2001)

  36. McCrimmon, K.: A taste of Jordan algebras, p. 564. Springer, Berlin (2004)

    MATH  Google Scholar 

  37. McCrimmon, K.: Jordan algebras and thneir applications. Bull. Am. Math. Soc. 844, 612–627 (1978)

    Article  Google Scholar 

  38. McKay, John: A rapid introduction to ADE theory, http://math.ucr.edu/home/baez/ADE.html

  39. Meng, G.: Euclidean Jotdan algebras, hidden actions, and J-Kepler problems. J. Math. Phys. 52, 112104 (2011). arXiv:0911.2977v3 [math-ph]

    Article  ADS  MathSciNet  Google Scholar 

  40. Murakami, Shingo: Diferential Geometry and Topology. Exceptional Simple Lie Groups and Related Topics in Recent Differential Geometry.Boju Jiang Chia-Kuei Peng Zixin Hou (Eds.) 190–377 (1989)

  41. Palmkvist, J.: A generalization of the Kantor–Koecher–Tits construction. J. Gen. Lie Theory Appl. 2, 226 (2008). arXiv:1308.3761 [math.RA]

    Article  MathSciNet  Google Scholar 

  42. Roos, G.: Exceptional symmetric domains, In: Bruce Guilling et al. (eds.), Symmetries in Complex Analysis, AMS, Contemporary Mathematics 468 (2008) 157–189; arXiv:0801.4076 [math.CV]

  43. Schafer, R.D.: Structure and representations of nonassociative algebras. Bull. Amer. Math. Soc. 61(6), 469–484 (1955)

    Article  MathSciNet  Google Scholar 

  44. Schafer, R.D.: AnIntroduction to Nonassociative Algebras. Dover, Illinois (1995)

    Google Scholar 

  45. Stoica, O.C.: The standard model algebra - leptons, quarks, and gauge from the complex Clifford algebra \(C\ell _6\). Adv. Appl. Clifford Algebras 28, 52 (2018). arXiv:1702.04336v3 [hep-th]

    Article  Google Scholar 

  46. Todorov, I.: Clifford algebras and spinors. Bulg. J. Phys. 58(1), 3–28 (2011). arXiv:1106.3197 [math-ph]

    MathSciNet  Google Scholar 

  47. Todorov, I., Dubois-Violette, M.: Deducing the symmetry of the standard model from the authomorphism and structure groups of the exceptional Jordan algebra, Bures-sur-Yvette preprint IHES/P/17/03

  48. Todorov, I., Drenska, S.: Composition algebras, exceptional Jordan algebra and related groups. JGSP 46, 59–93 (2017)

    Article  MathSciNet  Google Scholar 

  49. van der Blij, F.: History of the octaves, Simon Stevin, Wis. en Naturkundig Tidschrift 34e Jaargang Aflevering III (Februari 1961) 106–125

  50. Wick, J.C., Wightman, A.S., Wigner, E.P.: The intrinsic parity of elementary particles. Phys. Rev. 88, 101 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  51. Yokota, I.: Exceptional Lie groups, arXiv:0902.0431 [math.DG] (204 pages)

  52. Zelmanov, E.: On Isayah Kantor (1936–2006). J. Gener. Lie Theory Appl. 2(3), 111 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

I.T. thanks Michel Dubois-Violette for enlightening discussions and acknowledges the hospitality of the IHES (Bures-sur-Yvette) and the NCCR SwissMAP (Geneva) where part of this work was done. S. Drenska’s work has been supported by the Bulgarian National Science Fund, DFNI E02/6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Todorov.

Additional information

Extended version of lectures presented by I.T. at the Institute for Nuclear Research and Nuclear Energy during the spring of 2017 (see, [48]) and in May 2018.

This article is part of the Topical Collection on Homage to Prof. W.A. Rodrigues Jr edited by Jayme Vaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Todorov, I., Drenska, S. Octonions, Exceptional Jordan Algebra and The Role of The Group \(F_4\) in Particle Physics. Adv. Appl. Clifford Algebras 28, 82 (2018). https://doi.org/10.1007/s00006-018-0899-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-018-0899-y

Keywords

Navigation