Three-loop soft function for energetic electroweak boson production at hadron colliders

Abstract

We calculate the three-loop soft function for the production of an electroweak boson (Higgs, γ, W±, Z) with large transverse momentum at a hadron collider. It is the first time a soft function for a three-parton process is computed at next-to-next-to-next-to-leading order (N3LO). As a technical novelty, we perform the calculation in terms of forward-scattering-type loop diagrams rather than evaluating phase space integrals. Our three-loop result contains color-tripole contributions and explicitly confirms predictions on the universal infrared structure of QCD scattering amplitudes with three massless parton legs. The soft function is a central ingredient in the factorized cross section for electroweak boson production near the kinematic endpoint (threshold), where the invariant mass of the recoiling hadronic radiation is small compared to its transverse momentum. Our result is required for predictions of the near-threshold cross sections at N3LO and for the resummation of threshold logarithms at primed next-to-next-to-next-to-leading logarithmic (N3LL′) accuracy.

A preprint version of the article is available at ArXiv.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, JHEP 06 (2013) 072 [arXiv:1302.6216] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    X. Chen, T. Gehrmann, E. W. N. Glover and M. Jaquier, Precise QCD predictions for the production of Higgs + jet final states, Phys. Lett. B 740 (2015) 147 [arXiv:1408.5325] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    R. Boughezal, C. Focke, X. Liu and F. Petriello, W -boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 115 (2015) 062002 [arXiv:1504.02131] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order, Phys. Rev. Lett. 115 (2015) 082003 [arXiv:1504.07922] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    R. Boughezal, C. Focke, W. Giele, X. Liu and F. Petriello, Higgs boson production in association with a jet at NNLO using jettiness subtraction, Phys. Lett. B 748 (2015) 5 [arXiv:1505.03893] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    F. Caola, K. Melnikov and M. Schulze, Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD, Phys. Rev. D 92 (2015) 074032 [arXiv:1508.02684] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss and T. A. Morgan, Precise QCD predictions for the production of a Z boson in association with a hadronic jet, Phys. Rev. Lett. 117 (2016) 022001 [arXiv:1507.02850] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    R. Boughezal et al., Z-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 116 (2016) 152001 [arXiv:1512.01291] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss and T. A. Morgan, The NNLO QCD corrections to Z boson production at large transverse momentum, JHEP 07 (2016) 133 [arXiv:1605.04295] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    J. M. Campbell, R. K. Ellis and C. Williams, Direct photon production at next-to-next-to-leading order, Phys. Rev. Lett. 118 (2017) 222001 [Erratum ibid. 124 (2020) 259901] [arXiv:1612.04333] [INSPIRE].

  11. [11]

    X. Chen, J. Cruz-Martinez, T. Gehrmann, E. W. N. Glover and M. Jaquier, NNLO QCD corrections to Higgs boson production at large transverse momentum, JHEP 10 (2016) 066 [arXiv:1607.08817] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    J. M. Campbell, R. K. Ellis and C. Williams, Driving missing data at the LHC: NNLO predictions for the ratio of γ + j and Z + j, Phys. Rev. D 96 (2017) 014037 [arXiv:1703.10109] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss and D. M. Walker, Next-to-next-to-leading-order QCD corrections to the transverse momentum distribution of weak gauge bosons, Phys. Rev. Lett. 120 (2018) 122001 [arXiv:1712.07543] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    X. Chen, T. Gehrmann, N. Glover, M. Höfer and A. Huss, Isolated photon and photon+jet production at NNLO QCD accuracy, JHEP 04 (2020) 166 [arXiv:1904.01044] [INSPIRE].

    ADS  Google Scholar 

  15. [15]

    X. Chen, T. Gehrmann, E. W. N. Glover and A. Huss, Fiducial cross sections for the four-lepton decay mode in Higgs-plus-jet production up to NNLO QCD, JHEP 07 (2019) 052 [arXiv:1905.13738] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    J. M. Campbell, R. K. Ellis and S. Seth, H + 1 jet production revisited, JHEP 10 (2019) 136 [arXiv:1906.01020] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    E. Laenen, G. Oderda and G. F. Sterman, Resummation of threshold corrections for single particle inclusive cross-sections, Phys. Lett. B 438 (1998) 173 [hep-ph/9806467] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    T. Becher and M. D. Schwartz, Direct photon production with effective field theory, JHEP 02 (2010) 040 [arXiv:0911.0681] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  19. [19]

    C. W. Bauer, S. Fleming and M. E. Luke, Summing Sudakov logarithms in B → Xsγ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    C. W. Bauer, S. Fleming, D. Pirjol and I. W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    C. W. Bauer and I. W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  22. [22]

    C. W. Bauer, D. Pirjol and I. W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    C. W. Bauer, S. Fleming, D. Pirjol, I. Z. Rothstein and I. W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    M. Beneke, A. P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  25. [25]

    T. Becher, C. Lorentzen and M. D. Schwartz, Resummation for W and Z production at large pT , Phys. Rev. Lett. 108 (2012) 012001 [arXiv:1106.4310] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    T. Becher, C. Lorentzen and M. D. Schwartz, Precision direct photon and W -boson spectra at high pT and comparison to LHC data, Phys. Rev. D 86 (2012) 054026 [arXiv:1206.6115] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    T. Becher, G. Bell, C. Lorentzen and S. Marti, Transverse-momentum spectra of electroweak bosons near threshold at NNLO, JHEP 02 (2014) 004 [arXiv:1309.3245] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    F. P. Huang, C. S. Li, H. T. Li and J. Wang, Renormalization-group improved predictions for Higgs boson production at large pT, Phys. Rev. D 90 (2014) 094024 [arXiv:1406.2591] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    T. Becher, G. Bell, C. Lorentzen and S. Marti, The transverse-momentum spectrum of Higgs bosons near threshold at NNLO, JHEP 11 (2014) 026 [arXiv:1407.4111] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    M. D. Schwartz, Precision direct photon spectra at high energy and comparison to the 8 TeV ATLAS data, JHEP 09 (2016) 005 [arXiv:1606.02313] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    L. G. Almeida, S. D. Ellis, C. Lee, G. Sterman, I. Sung and J. R. Walsh, Comparing and counting logs in direct and effective methods of QCD resummation, JHEP 04 (2014) 174 [arXiv:1401.4460] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    Q. Jin and H. Lüo, Analytic form of the three-loop four-gluon scattering amplitudes in Yang-Mills theory, arXiv:1910.05889 [INSPIRE].

  33. [33]

    T. Ahmed, J. Henn and B. Mistlberger, Four-particle scattering amplitudes in QCD at NNLO to higher orders in the dimensional regulator, JHEP 12 (2019) 177 [arXiv:1910.06684] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    R. Brüser, Z. L. Liu and M. Stahlhofen, Three-loop quark jet function, Phys. Rev. Lett. 121 (2018) 072003 [arXiv:1804.09722] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    P. Banerjee, P. K. Dhani and V. Ravindran, Gluon jet function at three loops in QCD, Phys. Rev. D 98 (2018) 094016 [arXiv:1805.02637] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    L. J. Dixon, E. Herrmann, K. Yan and H. X. Zhu, Soft gluon emission at two loops in full color, JHEP 05 (2020) 135 [arXiv:1912.09370] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    Y. J. Zhu, Double soft current at one-loop in QCD, arXiv:2009.08919 [INSPIRE].

  38. [38]

    S. Catani, D. Colferai and A. Torrini, Triple (and quadruple) soft-gluon radiation in QCD hard scattering, JHEP 01 (2020) 118 [arXiv:1908.01616] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. [39]

    R. Brüser, Z. L. Liu and M. Stahlhofen, Three-loop soft function for heavy-to-light quark decays, JHEP 03 (2020) 071 [arXiv:1911.04494] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    L. W. Garland, T. Gehrmann, E. W. N. Glover, A. Koukoutsakis and E. Remiddi, Two loop QCD helicity amplitudes for e+ e → three jets, Nucl. Phys. B 642 (2002) 227 [hep-ph/0206067] [INSPIRE].

  41. [41]

    T. Gehrmann and L. Tancredi, Two-loop QCD helicity amplitudes for \( q\overline{q} \) → W ±γ and \( q\overline{q} \) → Z 0γ, JHEP 02 (2012) 004 [arXiv:1112.1531] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  42. [42]

    Q. Jin and G. Yang, Analytic two-loop Higgs amplitudes in effective field theory and the maximal transcendentality principle, Phys. Rev. Lett. 121 (2018) 101603 [arXiv:1804.04653] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    Q. Jin and G. Yang, Hidden analytic relations for two-loop Higgs amplitudes in QCD, Commun. Theor. Phys. 72 (2020) 065201 [arXiv:1904.07260] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  44. [44]

    T. Becher, G. Bell and S. Marti, NNLO soft function for electroweak boson production at large transverse momentum, JHEP 04 (2012) 034 [arXiv:1201.5572] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    I. W. Stewart, F. J. Tackmann and W. J. Waalewijn, The quark beam function at NNLL, JHEP 09 (2010) 005 [arXiv:1002.2213] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  46. [46]

    S. Catani and M. H. Seymour, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    S. Catani and M. H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. 510 (1998) 503] [hep-ph/9605323] [INSPIRE].

  48. [48]

    I. Moult, I. W. Stewart, F. J. Tackmann and W. J. Waalewijn, Employing helicity amplitudes for resummation, Phys. Rev. D 93 (2016) 094003 [arXiv:1508.02397] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    C. M. Arnesen, J. Kundu and I. W. Stewart, Constraint equations for heavy-to-light currents in SCET, Phys. Rev. D 72 (2005) 114002 [hep-ph/0508214] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  51. [51]

    R. Brüser, Renormalization of Wilson lines and applications to scattering processes, Ph.D. thesis, University of Mainz, Mainz, Germany (2019).

  52. [52]

    A. Pak, The toolbox of modern multi-loop calculations: novel analytic and semi-analytic techniques, J. Phys. Conf. Ser. 368 (2012) 012049 [arXiv:1111.0868] [INSPIRE].

    Article  Google Scholar 

  53. [53]

    A. V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  54. [54]

    E. Panzer, On hyperlogarithms and Feynman integrals with divergences and many scales, JHEP 03 (2014) 071 [arXiv:1401.4361] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    A. von Manteuffel, E. Panzer and R. M. Schabinger, A quasi-finite basis for multi-loop Feynman integrals, JHEP 02 (2015) 120 [arXiv:1411.7392] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  56. [56]

    A. von Manteuffel, E. Panzer and R. M. Schabinger, On the computation of form factors in massless QCD with finite master integrals, Phys. Rev. D 93 (2016) 125014 [arXiv:1510.06758] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    Z. L. Liu and M. Neubert, Two-loop radiative jet function for exclusive B-meson and Higgs decays, JHEP 06 (2020) 060 [arXiv:2003.03393] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    O. V. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D 54 (1996) 6479 [hep-th/9606018] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  59. [59]

    R. N. Lee, Space-time dimensionality D as complex variable: calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D, Nucl. Phys. B 830 (2010) 474 [arXiv:0911.0252] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  60. [60]

    R. N. Lee, Calculating multiloop integrals using dimensional recurrence relation and D-analyticity, Nucl. Phys. B Proc. Suppl. 205-206 (2010) 135 [arXiv:1007.2256] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    A. von Manteuffel and C. Studerus, Reduze 2 — distributed Feynman integral reduction, arXiv:1201.4330 [INSPIRE].

  62. [62]

    E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun. 188 (2015) 148 [arXiv:1403.3385] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  63. [63]

    R. N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].

  64. [64]

    R. N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].

    Article  Google Scholar 

  65. [65]

    A. V. Smirnov, FIESTA4: optimized Feynman integral calculations with GPU support, Comput. Phys. Commun. 204 (2016) 189 [arXiv:1511.03614] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  66. [66]

    E. Gardi, E. Laenen, G. Stavenga and C. D. White, Webs in multiparton scattering using the replica trick, JHEP 11 (2010) 155 [arXiv:1008.0098] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  67. [67]

    E. Gardi, J. M. Smillie and C. D. White, The non-Abelian exponentiation theorem for multiple Wilson lines, JHEP 06 (2013) 088 [arXiv:1304.7040] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  68. [68]

    T. Becher, M. Neubert and B. D. Pecjak, Factorization and momentum-space resummation in deep-inelastic scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [69]

    T. Becher and M. Neubert, On the structure of infrared singularities of gauge-theory amplitudes, JHEP 06 (2009) 081 [Erratum ibid. 11 (2013) 024] [arXiv:0903.1126] [INSPIRE].

  70. [70]

    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes and N3 LL resummation for n-jet processes, JHEP 01 (2020) 025 [arXiv:1908.11379] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  71. [71]

    O. Almelid, C. Duhr and E. Gardi, Three-loop corrections to the soft anomalous dimension in multileg scattering, Phys. Rev. Lett. 117 (2016) 172002 [arXiv:1507.00047] [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    T. van Ritbergen, A. N. Schellekens and J. A. M. Vermaseren, Group theory factors for Feynman diagrams, Int. J. Mod. Phys. A 14 (1999) 41 [hep-ph/9802376] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  73. [73]

    R. N. Lee, A. V. Smirnov, V. A. Smirnov and M. Steinhauser, Four-loop quark form factor with quartic fundamental colour factor, JHEP 02 (2019) 172 [arXiv:1901.02898] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  74. [74]

    J. M. Henn, T. Peraro, M. Stahlhofen and P. Wasser, Matter dependence of the four-loop cusp anomalous dimension, Phys. Rev. Lett. 122 (2019) 201602 [arXiv:1901.03693] [INSPIRE].

    ADS  Article  Google Scholar 

  75. [75]

    S. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren and A. Vogt, On quartic colour factors in splitting functions and the gluon cusp anomalous dimension, Phys. Lett. B 782 (2018) 627 [arXiv:1805.09638] [INSPIRE].

    ADS  Article  Google Scholar 

  76. [76]

    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [Erratum ibid. 111 (2013) 199905] [arXiv:0901.0722] [INSPIRE].

  77. [77]

    D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun. 180 (2009) 1709 [arXiv:0811.4113] [INSPIRE].

    ADS  Article  Google Scholar 

  78. [78]

    G. P. Korchemsky and A. V. Radyushkin, Renormalization of the Wilson loops beyond the leading order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].

    ADS  Article  Google Scholar 

  79. [79]

    S. Moch, J. A. M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: the nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  80. [80]

    S. Moch, J. A. M. Vermaseren and A. Vogt, The quark form-factor at higher orders, JHEP 08 (2005) 049 [hep-ph/0507039] [INSPIRE].

    ADS  Article  Google Scholar 

  81. [81]

    S. Moch, J. A. M. Vermaseren and A. Vogt, Three-loop results for quark and gluon form-factors, Phys. Lett. B 625 (2005) 245 [hep-ph/0508055] [INSPIRE].

    ADS  Article  Google Scholar 

  82. [82]

    A. Vogt, S. Moch and J. A. M. Vermaseren, The three-loop splitting functions in QCD: the singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  83. [83]

    T. Becher, M. Neubert and G. Xu, Dynamical threshold enhancement and resummation in Drell-Yan production, JHEP 07 (2008) 030 [arXiv:0710.0680] [INSPIRE].

    ADS  Article  Google Scholar 

  84. [84]

    V. Ahrens, T. Becher, M. Neubert and L. L. Yang, Renormalization-group improved prediction for Higgs production at hadron colliders, Eur. Phys. J. C 62 (2009) 333 [arXiv:0809.4283] [INSPIRE].

    ADS  Article  Google Scholar 

  85. [85]

    V. A. Smirnov, Analytic tools for Feynman integrals, Springer Tracts Mod. Phys. 250 (2012) 1 [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ze Long Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2010.05861

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z.L., Stahlhofen, M. Three-loop soft function for energetic electroweak boson production at hadron colliders. J. High Energ. Phys. 2021, 128 (2021). https://doi.org/10.1007/JHEP02(2021)128

Download citation

Keywords

  • Effective Field Theories
  • Perturbative QCD
  • Renormalization Group
  • Resummation