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1 Introduction

The production of an electroweak (EW) boson (Higgs, γ, W± or Z) with sizable transverse
momentum is among the most fundamental scattering processes at hadron colliders like the
LHC. The corresponding cross sections are experimentally and theoretically relatively clean
observables and allow precision phenomenology. Their measurements provide excellent
tests of the Standard Model, and probe the parton distributions inside the colliding hadrons
at small distances. EW gauge boson production at large transverse momenta also represents
an important background to Higgs measurements and new physics searches. On the other
hand the Higgs transverse momentum spectrum plays e.g. an important role for the analysis
of the Higgs couplings.

Moderate and large transverse momenta of EW bosons in hadron collisions are gener-
ated primarily by the recoil against hard QCD radiation (jets). Corresponding tree-level
processes with one hard final state parton are depicted in figure 1. Compared to the
inclusive EW boson production the leading order (LO) contribution therefore contains
an additional power of the strong coupling constant αs, and it is technically harder to
achieve the same level of accuracy on the theory side. In the last couple of years fixed-
order QCD predictions for EW boson production with nonzero transverse momentum have
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Figure 1. Tree-level Feynman diagrams for electroweak boson production with large transverse
momentum at hadron colliders. For EW gauge boson (orange wiggly lines) production example
diagrams of two different production channels are shown.

reached NNLO precision [1–16]. Depending on the kinematic region and the type of pro-
cess the NNLO corrections can be substantial. For example the NNLO QCD corrections
to Higgs+1 jet production at the LHC enhance the cross section by roughly 20%, while
the uncertainties from scale variations still amount to about 10% [2]. In view of future
precision measurements a further reduction of the theory error would be desirable.

Whereas full QCD N3LO results seem currently out of reach, threshold approximations
and the corresponding resummation of threshold logarithms can certainly improve the
current state-of-the-art fixed-order predictions, at least at large transverse momenta.1 In
the limit, where the transverse momentum of the EW boson becomes maximal (at fixed
rapidity), the invariant mass of the recoiling hadronic radiation vanishes and vice versa.
Close to this threshold all final state QCD radiation is either soft or anti-collinear to
the direction of the EW boson and the production cross section can be factorized into a
convolution of hard, jet, and soft functions [17, 18]. Within the framework of soft-collinear
effective theory (SCET) [19–24] the jet and soft functions are expressed as effective operator
matrix elements, while the hard function is a matching coefficient. Each of the factorization
functions obeys a corresponding renormalization group equation (RGE). Solving these and
evolving the functions from the respective physical hard, jet, and soft scales to a common
renormalization scale systematically resums large threshold logarithms (of the ratio between
the transverse momentum and the hadronic invariant mass). In this way near-threshold
predictions for cross sections with NNLL and partial N3LL resummation along with the
corresponding NNLO threshold corrections were obtained [18, 25–30].

In order to improve the predictions for EW boson production near threshold to N3LO
and (resummed) N3LL′ accuracy2 the factorization functions are required at three-loop
order. Given the recent progress in the calculation of N3LO four-particle scattering ampli-
tudes in QCD [32, 33], there is hope that also the three-loop virtual QCD corrections to EW
boson + jet production, constituting the hard function, become available in the not-too-far
future. The relevant quark and gluon jet functions were computed at three loops in refs. [34,
35]. The present paper is dedicated to the calculation of the three-loop soft function.

The soft function is given by a phase space integral constrained by the threshold mea-
surement over a squared matrix element with one outgoing and two incoming Wilson lines

1Often the threshold terms amount to the bulk of the corrections at a given order and the cross sec-
tions computed in the threshold limit represent indeed good approximations also at moderate transverse
momenta.

2For details and advantages of the primed counting, see e.g. ref. [31].
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along widely separated lightlike directions. Although the relevant two-loop single [36], one-
loop double [37], and tree-level triple emission [38] soft currents are available, performing
the necessary phase space integrations is a difficult task. We therefore follow a different
approach. Generalizing the ‘dispersive method’ we used to calculate the two-parton soft
function for heavy-to-light decays in ref. [39] we express our three-parton soft function in
terms of a single Wilson line correlator corresponding to a forward scattering process. The
phase space integrations then translate to loop integrations of Feynman diagrams with
one internal and four external Wilson lines. This trick allows us to directly apply modern
multi-loop technology and makes the three-loop calculation of the soft function relatively
straight-forward to carry out.

Our paper is organized as follows. In section 2 we briefly discuss the factorization
formula for the near-threshold production of EW bosons at the LHC and define the soft
function employing the color space formalism. In section 3 we devise the ‘dispersive method’
to compute the soft function in terms of loop diagrams. Section 4 describes the three-loop
calculation in some detail and we present our results for the soft function in section 5,
including a discussion of its divergence and color structure. We conclude in section 6.

2 Threshold factorization and soft function definition

In order to put the calculation performed in this paper into context we consider EW boson
(Y = γ,W,Z, h) production at the LHC, i.e. the process pp → Y + X. The ‘hadronic’
invariant mass of the final state particles in X (including the proton remnants) is

M2
X = (P1 + P2 − pY )2 , (2.1)

where P1,2 are the proton momenta. For MX → 0 the particles in X form a collimated
jet and any additional radiation must be soft. In this threshold limit the cross section
factorizes, which allows the resummation of large logarithms ∼ log(MX/Ecm) with Ecm
being the center of mass energy of the colliding protons [17].

Defining the kinematic invariants at partonic level as

ŝ = (x1P1+x2P2)2 = x1x2E
2
cm , t̂ = (x1P1−pY )2−m2

Y , û = (x2P2−pY )2−m2
Y , (2.2)

we can express the invariant hadronic mass as

M2
X = (E2

cm +m2
Y )
(

1− m⊥
mmax
⊥

)
= [(1− x1)P1 + (1− x2)P2 + pX ]2 (2.3)

= m2
X + (ŝ+ t̂)(1− x1) + (ŝ+ û)(1− x2) +O(M4

X) ,

where m2
X = p2

X , with pX = x1P1 +x2P2− pY , is the total invariant mass of the final state
partons (excluding the proton remnants), x1,2 are the fractions of the proton momenta
carried by the incoming partons of the hard scattering process, mY is the mass of the
EW boson, and m⊥ =

√
p2
T +m2

Y is its transverse mass. The maximal transverse mass
for fixed rapidity y of the EW boson is given by (mmax

⊥ )2 = (E2
cm + m2

Y )2/(2Ecm cosh y)2.
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From eq. (2.3) it is apparent that MX → 0 requires mX → 0 and x1,2 → 1 simultaneously.
We also see that this limit is approached for large transverse momenta of Y .

The corresponding factorized near-threshold cross section as derived in SCET [18] for
the channel ab→ cY with {a, b, c} = {q, q̄, g}, {q, g, q}, {q̄, g, q̄}, or {g, g, g} takes the form3

d2σab
dpTdy ∝

d2σab
dM2

Xdy
∝
∫

dx1

∫
dx2

∫
dm2

∫
dωHab(ŝ, t̂, û,mY , µ) fa(x1, µ)fb(x2, µ)Jc(m2, µ)

× Sab(nij , ω, µ) δ
[
M2
X −m2 − 2EJω − (ŝ+ t̂)(1− x1)− (ŝ+ û)(1− x2)

]
. (2.4)

The parton distribution functions (PDFs) fi(x, µ) are evaluated close to their endpoints at
x = 1. The hard function Hab corresponds to a SCET Wilson coefficient obtained from
matching SCET currents to full QCD matrix elements at the hard scale ∼ Ecm ∼ pT ≈ pmax

T

and contains the full QCD virtual corrections to the hard scattering process. It depends
on the hard kinematics and is known to two-loop order for Y = γ,W,Z, h [40–43]. The
jet function Jc describes the collinear radiation along the jet direction nµJ , which is anti-
collinear to the direction of Y ,4 and only depends on the type of parton initiating the jet
and its virtuality ∼MX . The respective three-loop results were obtained in refs. [34, 35].

The effects of soft wide-angle radiation (with momenta ∼M2
X/Ecm) are encoded in the

soft function Sab. It depends on the color representation of the three hard partons and the
total momentum component in n̄µJ direction of the soft partons. We also indicated a depen-
dence on nij ≡ ni ·nj with i, j = 1, 2, J , where the nµi denotes the lightlike proton and jet
directions in Minkowski space (n2

i = 0), respectively. This dependence is however such that
it exactly cancels the dependence on the jet energy EJ = [(ŝ+ t̂)(ŝ+ û)n12/(2n1Jn2J ŝ)]1/2

in eq. (2.4) as can be made manifest by rescaling ω [18]. The soft function is the same for
any Y and was calculated at two loops in ref. [44]. In the present paper we compute it at
three loops, i.e. O(α3

s).
For later reference we also quote the Laplace transform of eq. (2.4)

d2σ̃ab
dQ2dy =

∫ ∞
0

dM2
X exp

(
− M2

X

Q2eγE

) d2σab
dM2

Xdy
∝ Hab(ŝ, t̂, û,mY , µ)f̃a(τ1, µ)f̃b(τ2, µ)j̃c(Q2, µ)s̃ab(κ, µ) , (2.5)

where the convolutions turned into simple products of f̃i, J̃c, and s̃ab, which denote the
PDFs, jet, and soft functions in Laplace space [18], respectively, and

τ1 = Q2

ŝ+ t̂
, τ2 = Q2

ŝ+ û
, κ = Q2

2EJ
. (2.6)

In section 5.1, we derive the three-loop anomalous dimension of the soft function in Laplace
space via the renormalization group (RG) invariance of eq. (2.5) and check the consistency
with our explicit calculation.

3The factorization was performed here on the partonic level for small mX . The factorized partonic cross
section is then convoluted with the (threshold) PDFs to obtain eq. (2.4).

4We define n2
i = 0 and n̄i ·ni = 2 for i = 1, 2, J .
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In SCET the PDFs, the jet function, and the soft function are defined as operator
matrix elements. For illustration we quote here the relevant (unrenormalized) expressions
for the quark and anti-quark PDFs of a proton (pni) with momentum P−nµi /2 employing
the SCET label formalism [23, 45]:

fq(x) =
〈
pni(P−)

∣∣θ(x)χni(0)
/̄ni
2
[
δ(xP− − Pni)χni(0)

]∣∣pni(P−)
〉
, (2.7)

fq̄(x) =
〈
pni(P−)

∣∣θ(x) tr
{
/̄ni
2 χni(0)

[
δ(xP− − Pni)χni(0)

]}∣∣pni(P−)
〉
. (2.8)

The composite quark field operator χni is gauge-invariant w.r.t. collinear gauge transfor-
mations and includes a collinear Wilson line in its definition, see e.g. ref. [45] for details.
The label momentum operator Pni returns the total large light-cone (minus) momentum
component of the ni-collinear fields it acts on. A similar expression holds for the gluon
PDF [23, 45]. The jet function and PDFs have trivial color structure, i.e. they do not have
open color indices.

In contrast, the hard and soft functions can be regarded as color tensors with one index
for each parton in the hard scattering amplitude and one for each parton in the complex
conjugate amplitude. Corresponding color indices of soft and hard functions are pairwise
contracted in the factorized cross section. (In eqs. (2.4) and (2.5) color indices have been
suppressed for the sake of compactness.) A convenient way to deal with the colors structure
of scattering processes with more than two partons is the color-space formalism [46, 47].
Applying it to our factorized cross section the soft function represents a square matrix in
color space acting to the left and right on color vectors corresponding to the hard scattering
amplitude and its complex conjugate. In general we write for the hard function and the
corresponding hard amplitude5

Ha1a2...b1b2... ∝ Ca1a2...

(
Cb1b2...

)∗
, Ca1a2... =

∑
k

〈
a1a2 . . .

∣∣
k
Ck, (2.9)

where the ai (and bi) are color indices of the parton legs and
〈
a1a2 . . .

∣∣
k
are (not necessarily

orthonormal) vectors spanning the color space. In the special case of three hard partons
the color space is only one-dimensional and we define6

〈
a1a2aJ

∣∣ =
∣∣a1a2aJ

〉∗ =


taJa2a1 for the qq̄ → g channel,
ta2
aJa1 for the qg → q channel,

ifa2aJa1 for the gg → g channel,
(2.10)

where tabc and if bac are the SU(Nc) generators in the fundamental and the adjoint repre-
sentation, respectively.7 We thus have (for each production channel)

Ha1a2aJb1b2bJSa1a2aJb1b2bJ = H
〈
a1a2 . . .

∣∣S∣∣a1a2aJ
〉

= HS
〈
a1a2aJ

∣∣a1a2aJ
〉
, (2.11)

5The hard amplitude C equals the QCD scattering amplitude with hard parton legs, where in the course
of the SCET matching procedure, the IR divergences are subtracted.

6Here and in the following we often neglect the q̄g → q̄ channel, because it is trivially related to the qg → q

channel by charge conjugation. In QCD therefore all physical results for the two channels are the same.
7The totally-symmetric tensor dabc = tr[{ta, tb}tc]/TF is ruled out by charge conjugation symmetry of

QCD as another possible color structure for the gg → g amplitude, see e.g. ref. [48].
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where Sa1a2... represents the soft function as a tensor with color indices and S represents
the soft function as an operator acting on color space vectors, which is proportional to the
unit operator (S = S 1) in our one-dimensional color space.

Using this notation the soft function operator is defined by [18]

S(ω) =
〈
0
∣∣T[Y †J,out(0)Y †1,in(0)Y †2,in(0)

]
δ(ω − nJ · p̂) T

[
YJ,out(0)Y1,in(0)Y2,in(0)

]∣∣0〉 , (2.12)

where T (T) indicates (anti-)time ordering, p̂µ is the soft momentum operator, and

Yi,in(x) = P exp
[
−ig

∫ 0

−∞
ds ni ·Ac(x+ sni) T c

i

]
, (2.13)

Yi,out(x) = P exp
[
+ig

∫ ∞
0

ds ni ·Ac(x+ sni) T c
i

]
, (2.14)

are the soft Wilson lines for an incoming and outgoing parton i, respectively. The symbol
P (P)denotes (anti-)path ordering of the color charge operators T c

i and the associated
(ultra)soft SCET gluon field operators Acµ(x). The action of the T c

i on color space vectors
is defined by〈

a1 . . . ai . . . an
∣∣T c
i

∣∣a1 . . . ai . . . an
〉
≡
〈
a1 . . . bi . . . an

∣∣T caibi ∣∣a1 . . . ai . . . an
〉

(2.15)

with

T caibi ≡


tcaibi if parton i is a outgoing quark or incoming antiquark,
−tcbiai if parton i is an incoming quark or outgoing antiquark,
ifaicbi if parton i is a gluon.

(2.16)

Note that T c
i T c

i = CR1, where CR is the quadratic Casimir of the color representation R
of parton i (R = F for (anti)quarks and R = A for gluons) and

n∑
i=1

〈
a1 . . . ai . . . an

∣∣T c
i =

n∑
i=1

T c
i

∣∣a1 . . . ai . . . an
〉

= 0 (2.17)

due to color conservation in the scattering amplitudes. Color charge operators of different
partons commute trivially, i.e. [T a

i ,T
b
j ] = 0 for i 6= j, while [T a

i ,T
b
i ] = ifabcT c

i .

3 Dispersive method

The soft function defined in eq. (2.12) represents an integral of a squared matrix element
of one outgoing and two incoming Wilson lines. This can be made explicit by inserting a
complete set of (soft final) states (X),

S(ω) =
∑∫
X

δ(ω − nJ · pX)
∣∣∣〈X∣∣T[YJ,out(0)Y1,in(0)Y2,in(0)

]∣∣0〉∣∣∣2. (3.1)

Rather than evaluating phase space integrals we would like to compute the soft function in
terms of forward-scattering-type loop diagrams. A similar ‘dispersive’ method was used for
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the calculation of the soft function for heavy-to-light decays near the kinematic endpoint
as detailed in ref. [39].

Following this approach, we will rewrite the δ-function in eq. (2.12) as a (momentum-
space Wilson line) propagator-type expression using

δ(x) = ∓ 1
π

Im
[ 1
x± iδ

]
= ± 1

π
Re
[ i
x± iδ

]
, (3.2)

where iδ represents an infinitesimally small positive imaginary part. Our goal is to express
the soft function in terms of a single time-ordered (forward-scattering) matrix element,
which can be evaluated using ordinary (Wilson line) momentum space Feynman rules. As
usual in momentum space perturbation theory the time-ordering is effectively implemented
via the causal ‘i0’ prescriptions for the propagators in the corresponding Feynman graphs.
Using eq. (3.2) means that we will introduce another independent imaginary infinitesimal
in the computation and special care has to be taken in order to avoid unphysical imaginary
parts due to interference of iδ and i0 in loop graphs giving rise to physical thresholds.8

Concretely, we implement the δ-function in eq. (2.12) as follows

S(ω) =
〈
O†δ(ω−nJ · p̂)O

〉
= 1

2π

(〈
O†Re

[ i
ω−nJ · p̂+iδ

]
O
〉
−
〈
O†Re

[ i
ω−nJ · p̂− iδ

]
O
〉)

= 1
2π Re

[〈
O†

i
ω−nJ · p̂+iδ O

〉
−
〈
O†

i
ω−nJ · p̂− iδ O

〉]
,

= 1
2π Re

[
Discω

〈
O†

i
ω−nJ · p̂

O
〉]
, (3.3)

where O ≡ T[YJ,out(0)Y1,in(0)Y2,in(0)], 〈. . .〉 ≡ 〈0| . . . |0〉, and Discx g(x) ≡ limβ→0 [g(x +
iβ)− g(x− iβ)]. At first sight taking the real part in eq. (3.3) may seem redundant. It will
however become important due to our treatment of iδ and i0 in the following derivation.
We will illustrate the necessity of taking the real part in our dispersive approach for the
soft function explicitly at two loops at the end of this section.

Note that the operator matrix element in the last line of eq. (3.3) alone is ambiguous.
We therefore conveniently define

σ(ω) ≡
〈
0
∣∣T[Y †J,out(0)Y †1,in(0)Y †2,in(0)

] i
ω − nJ · p̂+ i0 T

[
YJ,out(0)Y1,in(0)Y2,in(0)

]∣∣0〉. (3.4)

Here we inserted +i0 in the denominator in order to obtain a well-defined analytical ex-
pression for real ω and to make σ(ω) directly calculable via Feynman diagrams as we will
demonstrate below. With eq. (3.4) we can write

S(ω) = S(ω)1 = 1
2π Re

[
Discω σ(ω)

]
, (3.5)

8By ‘physical threshold’ (not to be confused with the large transverse momentum ‘threshold’ of the EW
boson) we refer to a branch cut along physical values of some kinematic invariant the soft function depends
on besides ω. The corresponding amplitude for the heavy-to-light soft function discussed in ref. [39] is free
of such thresholds. The subtleties related to the difference of iδ and i0 are therefore absent in that case and
eq. (3.2) can directly be applied with iδ ' i0.
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where the i0→ 0 limit inside σ(ω) is understood to be taken before the discontinuity. Note
that we could just as well define σ(ω) with i0 → −i0, which would lead to Discω σ(ω) →
[Discω σ(ω)]∗. Taking the real part in eq. (3.5) removes this ambiguity and is therefore
necessary to ensure the consistency with eq. (3.3).

Let us now consider the evaluation of σ(ω). First, we notice that

σ(ω) =
〈
0
∣∣T[Y †1,in(0)Y †2,in(0)

]
Y †J,out(0) i

ω − nJ · p̂+ i0 YJ,out(0) T
[
Y1,in(0)Y2,in(0)

]∣∣0〉, (3.6)

because the gluon field operators Aaµ inside Y (†)
J,out are already (anti)time-ordered by default

as a consequence of the (anti)path-ordering in eq. (2.14), and because the fields at positive
times from Y

(†)
J,out are already to the left (right) of the fields at negative times in the T (T)

product. Using

i
ω − nJ · p̂+ i0 =

∫ ∞
−∞

dr ei(ω−nJ ·p̂)r θ(r) =
∫ ∞

0
dr ei(ω−nJ ·p̂)r , (3.7)

we can thus write

σ(ω) =
∫ ∞

0
dr eiωr〈0∣∣T[Y †1,in(0)Y †2,in(0)

]
Y †J,out(0)e−inJ ·p̂ r YJ,out(0)T

[
Y1,in(0)Y2,in(0)

]∣∣0〉
=
∫ ∞

0
dr eiωr〈0∣∣T[Y †1,in(rnJ)Y †2,in(rnJ)

]
Y †J,out(rnJ)YJ,out(0)T

[
Y1,in(0)Y2,in(0)

]∣∣0〉 (3.8)

=
∫ ∞

0
dr eiωr〈0∣∣T[Y †1,in(rnJ)Y †2,in(rnJ)

]
Pexp

[
ig
∫ r

0
ds nJ ·Ac(snJ)T c

J

]
T
[
Y1,in(0)Y2,in(0)

]∣∣0〉 .
For an evaluation of σ(ω) via forward scattering Feynman diagrams all field operators in
eq. (3.8) must be time-ordered. In the present form they are already time-ordered except
for the operators in the T product. We can bring them into time order by the procedure
sketched in the following, see also ref. [39] for a similar argument.

We first recombine σ(ω) with the n1- and n2-collinear matrix elements, i.e. the PDFs.
We can now undo the BPS field redefinition [22] of the collinear fields, which made the
decoupling of soft and collinear sectors at leading order in the SCET expansion manifest.
While the following arguments hold in general, let us consider the qq̄ → g channel for
concreteness. The resulting soft-collinear matrix element then has the schematic form

〈
pn1pn2

∣∣χn1(rnJ)χn2(rnJ)P exp
[
ig
∫ r

0
ds nJ ·Ac(snJ)T c

J

]
χn1(0)χn2(0)

∣∣pn1pn2

〉
, (3.9)

where we suppressed the Dirac structure as well as the delta functions fixing the label
momentum of the collinear (χ) fields from eqs. (2.7) and (2.8) for brevity. As r > 0 the
fields in eq. (3.9) are in fact time-ordered. We can make this manifest by inserting the
time-ordering operator T and redo the BPS field redefinitions χn1 → Y1,in χn1 and χn2 →
Y2,in χn2 .

9 Note, however, that the consistent interpretation of eq. (3.9) as forward matrix
element now requires that 〈pn1pn2 | = out〈pn1pn2 |. This entails that the field redefinition

9To properly keep track of the color indices, see e.g. the detailed derivation of the factorization theorem
based on the BPS field redefinition in ref. [18].
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nJ

Figure 2. Two-loop diagram contributing to σ(ω) and responsible for the imaginary part of
Discω σ(ω) at this order. The external double lines on the left (right) correspond to the semi-infinite
lightlike Wilson lines Y (†)

i,in(out), the middle double line corresponds to the finite-length Wilson line
in eq. (3.11). The little arrows indicate the parton flow for a generic parton channel with color
charge operators T c

i for each Wilson line vertex. The crossed vertices on the left (right) indicate
the (complex conjugated) hard amplitude.

of the interpolating (anti)quark fields at time +∞ generating part of the outgoing proton-
proton state gives rise to an additional factor Y1∞Y2∞ [49] with

Yi∞ = P exp
[
−ig

∫ +∞

−∞
ds ni ·Ac(x+ sni) T c

i

]
= Yi,in(rnJ)Y †i,out(rnJ) (3.10)

to the right of the Y †i,in. We emphasize that the color charge operator Ti in Yi,out is still
that of an incoming parton i = 1, 2 w.r.t. eq. (2.16).

We can now factorize out the PDFs again, which are matrix elements of local operator
products in SCET and as such unaffected by the time-ordering, and finally end up with

σ(ω)=
∫ ∞

0
dreiωr〈0∣∣T[Y †1,out(rnJ)Y †2,out(rnJ)Pexp

[
ig
∫ r

0
dsnJ ·Ac(snJ)T c

J

]
Y1,in(0)Y2,in(0)

]∣∣0〉.
(3.11)

This expression for σ(ω) admits a straightforward evaluation in terms of forward-scattering-
type loop diagrams using QCD Wilson-line Feynman rules in momentum space.

One of the relevant Feynman graphs at two-loop order is shown in figure 2. Applying
the Feynman rules and dimensional regularization (d = 4− 2ε) we have

σ(ω)
∣∣
Figure 2 =−16π2α2

s n12 f
abcT a

1 T c
2 T b

2

∫ ddl1
(2π)d

ddl2
(2π)d

× n2·(l1 + l2)
[n1·(l1−l2)+i0](n2·l2 +i0)(nJ ·l1 +ω+i0)(n2·l1 +i0)(l21 +i0)(l22 +i0)[(l1−l2)2 +i0]

=−2iCSCA1
(
αs
4π

)2
(2π)2ε (−ω− i0)−1−4ε(n1Jn2J)2ε

[
(n12)−2εΓ(1−2ε)Γ2(−ε)Γ(2ε)Γ(4ε)

+(−n12− i0)−2εΓ2(−2ε)Γ2(−ε)Γ(2ε)Γ(1+4ε)Γ(1+3ε)
Γ(ε)

]
. (3.12)

The left-right and up-down mirror graphs yield the exact same result. The color factor CS
depends on the channel and is given in eq. (5.3). To obtain the corresponding contribu-
tion to the soft function according to eq. (3.5) we first take the discontinuity in ω (after
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n1 n1

n2 n2

nJ

(a)

n1 n1

n2 n2

nJ

(b)

n1 n1

n2 n2

nJ

(c)

n1 n1

n2 n2

nJ

(d)

Figure 3. Examples for three-loop Feynman diagrams that contribute to the soft function S(ω).

ω + i0→ ω) using
Discω(−ω)−1−aε = −2i sin(πaε)ω−1−aεθ(ω) . (3.13)

The resulting expression has an imaginary part from the branch cut in the (−n12 − i0)−2ε

factor for (physical) n12 > 0 (related to a physical threshold in the full QCD one-gluon emis-
sion amplitude for the process ab→ cY ). In a calculation based on eq. (3.1) as performed
e.g. in ref. [44] such imaginary parts also appear in the soft amplitude, but cancel in the
product with the complex conjugated amplitude. Equivalently, using two-loop diagrams
with a unitarity cut (through a single gluon line) the imaginary part cancels between the
diagram corresponding to figure 2 and its left-right mirror diagram. In our approach the
imaginary part is removed by explicitly by taking the real part in eq. (3.5). At two loops the
diagram in figure 2 (together with its mirror graphs) is the only one with an imaginary part
after taking the discontinuity. At three loops we found quite a number of such diagrams.

4 Calculation

In this section, we present details of our three-loop calculation of the soft function based on
eqs. (3.5) and (3.11). The calculation is performed in general covariant gauge with gauge
parameter ξ, where ξ = 0 corresponds to Feynman gauge. Ultraviolet (UV) and infrared
(IR) divergences are regulated using dimensional regularization (d = 4− 2ε).

We generate the relevant three-loop Feynman diagrams with qgraf [50]. Some exam-
ples of non-trivial three-loop graphs are shown in figure 3. Based on dimensional counting
and investigating the behavior of the corresponding loop integrals under rescaling

n1 → λ1n1 , n2 → λ2n2 , nJ → λJnJ , ω → λJω , (4.1)

we can directly identify already at this stage classes of diagrams that vanish as scaleless
integrals, as illustrated in figure 4. We are then left with 1290 non-trivial diagrams to be
computed.

These diagrams are further processed by a private Mathematica code [51] which first
assigns the momentum space Feynman rules and performs simplifications of the Dirac,
Lorentz and color structure. After that the diagrams are expressed as linear combinations
of scalar Feynman integrals. Exploiting the n1 ↔ n2 interchange symmetry these can be
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n1 n1

n2 n2

nJ

n1 n1

n2 n2

nJ

n1 n1

n2 n2

nJ

Figure 4. Using the same arguments that lead to eq. (4.4) one can show that (sub)diagrams
whose integrand is independent of at least one of the lightlike vectors ni and any external invariant
l2j (where lj is an external loop momentum w.r.t. the subloop) vanish in dimensional regularization.
Examples for such diagrams are shown in this figure. The gray blob stands for all possible subdia-
grams that involve the Wilson lines it overlaps.

mapped onto twenty integral families corresponding to different sets of fifteen linearly in-
dependent linear (Wilson line) and quadratic propagators. The mapping of scalar integrals
to specific families requires partial-fraction decomposition of linear propagators followed by
suitable shifts of the loop momenta. In order to automate the extensive partial fractioning
we employed the algorithm described in ref. [52].

Next, we use the public program FIRE5 [53] to perform the integration-by-parts (IBP)
reduction of the integrals in each of the twenty integral families to a set of master integrals
(MIs). In three of the families we find an additional partial-fraction identity among the
MIs returned by FIRE5, reducing their number by one, respectively. We then identify
redundant MIs across the families, i.e. subsets of MIs with the same integrand up to loop
momentum shifts despite being members of different families. Finally, the sum of all
three-loop diagrams contributing to σ(ω) can be expressed as a linear combination (with
real d-dependent coefficients) of 73 linearly independent MIs belonging to eleven different
integral families. In this expression the gauge parameter ξ manifestly cancels out, which
represents a strong check of our setup.

The integrals in each family can be written as

G(~a,~b,~c,~e, ε) =
(
iπ

d
2
)−3

∫ ddk1 ddk2 ddk3

Da1
1 D

a2
2 D

a3
3 D

a4
4 D

a5
5 D

a6
6 D

b1
7 D

b2
8 D

b3
9 D

c1
10D

c2
11D

c3
12D

e1
13D

e2
14D

e3
15
, (4.2)

where the denominators D1,··· ,6 correspond to quadratic propagators, and D7,8,9, D10,11,12,
and D13,14,15 correspond to propagators of Wilson lines along the n1, n2 and nJ directions,
respectively. To give an example, one of our integral families is defined by

D1 = −k2
1 , D2 = −k2

2 , D3 = −k2
3 ,

D4 = −(k1 − k2)2 , D5 = −(k2 − k3)2 , D6 = −(k3 − k1)2 ,

D7 = −n1 · k1 , D8 = −n1 · k2 , D9 = −n1 · k3 ,

D10 = −n2 · k1 , D11 = −n2 · k2 , D12 = −n2 · k3 ,

D13 = −nJ · k1 − ω , D14 = −nJ · k2 − ω , D15 = −nJ · k3 − ω , (4.3)

where Di → Di− i0 in eq. (4.2) is understood. Our definitions of propagator denominators
Di for the remaining ten integral families are given in appendix C. For all eleven families,
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the result of the generic integral in eq. (4.2) is constrained by the scaling properties of its
integrand w.r.t. eq. (4.1) to be of the form10

G(~a,~b,~c,~e, ε) = (−ω − i0)3d−2A−B−C−E
(
n12
2

) 3d
2 −A−B−C

(
n1J
2

)A+C− 3d
2
(
n2J
2

)A+B− 3d
2

× I(~a,~b,~c,~e, ε) , (4.4)

where A =
∑
i ai, B =

∑
i bi, C =

∑
i ci and E =

∑
i ei. The dependence on the external

kinematics is thus completely fixed and factored out. What is left to be computed is the
dimensionless, in general complex, function I(~a,~b,~c,~e, ε). In fact, because of eq. (3.5), we
can safely set ω = −1 and only evaluate the real parts of the relevant MIs as an expansion
in ε. The ω dependence of the MIs can finally be restored according to eq. (4.4).

For the analytic computation of the MIs we follow the approach of ref. [34], which
was inspired by refs. [54–56]. See also refs. [39, 57] for recent applications and some more
details of this method. The basic strategy is to express each MI in terms of known inte-
grals (with less propagators) and integrals that are quasi-finite in d = 4− 2ε or higher, in
practice d = 6− 2ε, d = 8− 2ε, or d = 10− 2ε dimensions using dimensional recurrence re-
lations [58–60] and IBP reduction. The integrands of quasi-finite integrals in the Feynman
parameter representation are by definition free of endpoint singularities. For each MI we
determine a suitable set of related quasi-finite integrals using the program Reduze2 [61].
We then expand their integrands and perform the integrations over the Feynman param-
eters order-by-order in ε using the Maple package HyperInt [62]. In order to deal with
threshold singularities (related to the ‘physical thresholds’ discussed in section 3) HyperInt
automatically performs a contour deformation by adding an infinitesimal imaginary part
to one of the Feynman parameters. In general, this procedure leads to unreliable results for
the imaginary parts of the MIs (for ω = −1), which is however irrelevant for our calcula-
tion, because only the real parts contribute to our soft function. We discuss the evaluation
of the three-loop integrals with non-zero imaginary parts in more detail in appendix D. To
determine the required dimensional recurrence relations we use LiteRed [63, 64]. Via IBP
reduction, we can bring the linear relations between the MIs (collected in the vector ~I ) in
d+2 and d dimensions into the form ~I(d+2) = A(d) · ~I(d) for arbitrary d. We then obtain
the analytic results for the MIs by solving the set of linear equations generated by (up to
three) iterations of the real matrix A(d) with our results for the quasi-finite integrals (in
d = 6 − 2ε, d = 8 − 2ε, and d = 10 − 2ε dimensions) as the input. Finally, we check the
analytic expressions numerically using the sector decomposition program FIESTA4 [65].

5 Results

Evaluating all relevant three-loop Feynman diagrams as described in the previous section
and summing up their contributions yields σ(ω) in eq. (3.11) at O(α3

s). According to

10Note that S(ω) vanishes for negative ω. In view of eqs. (3.5) and (3.13) it is therefore natural to pull
out a factor of (−ω), instead of (+ω), to the power determined by dimensional counting.

– 12 –



J
H
E
P
0
2
(
2
0
2
1
)
1
2
8

eq. (3.5) and using eq. (3.13) we obtain the bare N3LO soft function11

Sbare
η (ω) = δ(ω) + Zααs

4π
1
ω

(
µ

ω̂

)2ε
CSηKS

+
(
Zααs

4π

)2 1
ω

(
µ

ω̂

)4ε (
C2
SηKSS + CSηCAKSA + CSηnfTFKSf

)
+
(
Zααs

4π

)3 1
ω

(
µ

ω̂

)6ε
[
C3
SηKSSS + C2

SηCAKSSA + CSηC
2
AKSAA

+ C2
SηnfTFKSSf + CSηCFnfTFKSFf + CSηCAnfTFKSAf

+ CSη(nfTF )2KSff + Cη3KC3

]
+O(α4

s) , (5.1)

where the coefficients KX are given in appendix B. The subscript η = qq̄, qg, gg indicates
the partonic (production) channel. All dependence of the soft function on the kinematic
variables n12, n1J and n2J is encoded in

ω̂ ≡ ω
√

2n12
n1Jn2J

, (5.2)

which is invariant under the rescaling in eq. (4.1). This follows from the (re)scaling invari-
ance of the Wilson lines in eq. (2.12). Following ref. [44] we have included a factor of

√
2

in the definition of ω̂ for convenience.
The color factor CSη depends on the partonic channel and can be expressed in terms

of the quadratic Casimir invariants CF = (N2
c − 1)/(2Nc) and CA = Nc of SU(Nc) with

TF = 1/2 [44]:
CSqq̄ = CF −

CA
2 , CSqg = CSgg = CA

2 . (5.3)

The color factor Cη3 originates from tripole color structures that first appear at three loops
and is computed below. The number of light (massless) quark flavors is denoted by nf .
For practical reasons our code performing the color algebra for the three-loop Feynman
diagrams returns the color factors expressed in terms of Nc. Due to non-Abelian exponen-
tiation [66, 67] and Casimir scaling of the color dipole contributions we are nevertheless
able to uniquely reconstruct the color factors in eq. (5.1) in terms of Casimir invariants as
explained in section 5.2.

We define αs ≡ αs(µ) to be the renormalized QCD coupling constant. We stress that
Zαµ

2εαs (= αbare
s ) and therefore the bare soft function is independent of the renormalization

scale µ. For renormalized quantities we use the MS scheme throughout this work. The
relevant terms of the strong coupling renormalization factor Zα are

Zα = 1 + αs
4π

(
−β0
ε

)
+
(
αs
4π

)2
(
β2

0
ε2
− β1

2ε

)
+O

(
α3
s

)
(5.4)

with
β0 = 11

3 CA −
4
3TFnf , β1 = 34

3 C
2
A −

20
3 CAnfTF − 4CFnfTF . (5.5)

11Here and in the following we assume ω > 0 and do not write out the θ(ω) from eq. (3.13) for brevity.
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Following ref. [18] we conveniently perform the renormalization of the soft function in
Laplace space. This is, because the Laplace transformation according to

s̃η (L) =
∫ ∞

0
dω exp

(
− ω

κeγE

)
Sη(ω) , (5.6)

with

L = ln
(
κ

µ

√
2n12
n1Jn2J

)
(5.7)

and κ as defined in eq. (2.6), turns the momentum space convolutions between renormal-
ization factor, anomalous dimension, and renormalized soft function into simple (local)
products, cf. eq. (2.5). The Laplace transform of the bare momentum space soft function
in eq. (5.1) is obtained using the simple replacement rule

1
ω

(
µ

ω̂

)nε
→ e−nε(L+γE)Γ(−nε) . (5.8)

5.1 Anomalous dimension

In Laplace space, the bare and renormalized soft function are related by the local renor-
malization factor Zsη ,

s̃bare
η (κ) = Zsη(µ) s̃η(L, µ) . (5.9)

The renormalized soft function obeys the RGE
d

d lnµs̃η(L, µ) = ΓSη s̃η(L, µ) , (5.10)

with the soft anomalous dimension ΓSη . The Laplace space RGEs for the PDFs, the hard,
and the jet function take the same form. RG invariance of the near-threshold cross section
in eq. (2.5) implies ({a, b, c} = {q, q̄, g}, {q, g, q}, or {q̄, g, q̄}, or {g, g, g}, η = ab)

ΓHη + Γfa + Γfb + ΓJc + ΓSη = 0 , (5.11)

where12

Γfi = 2Γicusp(αs) ln τi + 2γfi(αs) , (5.12)

ΓJi = − 2Γicusp(αs) ln
(
Q2

µ2

)
− 2γJi(αs) , (5.13)

are the (x → 1 threshold) PDF and jet function anomalous dimensions in Laplace space,
respectively. The variables Q2 and τi are given in eq. (2.6) and we conveniently define
Γqcusp = CFγcusp and Γgcusp = CAγcusp for the universal cusp anomalous dimension.

The anomalous dimension of the hard function is denoted by ΓHη . For scattering am-
plitudes with three massless partons the corresponding operator in color space reads [69, 70]

ΓH = 2 Re
[∑

(i,j)

Ti · Tj
2 γcusp(αs) ln µ2

−sij
+
∑
i

γi(αs) 1 + f(αs)
∑

(i,j,k)
Tiijk

]
, (5.14)

12In this paper we use the same convention for γJi as refs. [18, 68]. In order to switch to the convention
of refs. [34, 39] one has to multiply our γJi by −1/2.
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where Ti is the color charge operator for the i-th parton leg of the scattering amplitude
defined in eq. (2.16) and sij ≡ 2σijpi · pj + i0, where the sign factor σij = +1, if the
momenta of i-th and j-th parton pi and pj are both incoming or outgoing, and σij = −1
otherwise. The sums are over all combinations of distinct parton indices. The non-cusp
anomalous dimension γi is associated with each external massless (anti)quark (γi = γq)
or gluon (γi = γg). The last term in eq. (5.14) corresponds to a color tripole contribution
and is non-zero starting from three loops. The color structure Tijkl is given by [69]

Tiijk = 1
2f

adef bce{T a
i ,T

b
i }T c

j T d
k . (5.15)

The three-loop contribution to the associated coefficient

f(αs) =
∑
n≥3

(
αs
4π

)n
fn (5.16)

was computed in ref. [71] and reads

f3 = 16(2ζ2ζ3 + ζ5) . (5.17)

Evaluating

ΓHη =
〈
a1a2aJ

∣∣ΓH ∣∣a1a2aJ
〉〈

a1a2aJ
∣∣a1a2aJ

〉 (5.18)

with
Cη3 ≡

〈
a1a2aJ

∣∣Tiijk∣∣a1a2aJ
〉〈

a1a2aJ
∣∣a1a2aJ

〉 (5.19)

we obtain from eq. (5.11)

ΓSη = −4Γηcusp(αs)L− 2γSη(αs)− 2Cη3f(αs) , (5.20)

where γSη is the non-cusp piece of the soft anomalous dimension, and we have

Γqq̄cusp =CSqq̄γcusp , γSqq̄ = 2γq+γg+2γfq−γJg , Cqq̄3 =−6C4(F,A)
CF

+ C3
A

4 =−3
2Nc ,

Γqgcusp =CSqgγcusp , γSqg = 2γq+γg+γfq +γfg−γJq , Cqg3 =−6C4(F,A)
CF

+ C3
A

4 =−3
2Nc ,

Γggcusp =CSggγcusp , γSgg = 3γg+2γfg−γJg , Cgg3 =−6C4(A,A)
CA

+ C3
A

4 =−9Nc ,

(5.21)

for the different parton channels. In order to obtain the explicit expressions for the color
factor Cη3 in terms of the quartic Casimir invariants

C4(R,A) = dabcdR dabcdA

NR
, (5.22)

where dabcdR = trR
[
T

(a
R T

b
RT

c
RT

d)
R

]
denotes the fully symmetric rank-four tensor of the SU(Nc)

representation R, and NA = N2
c − 1, NF = Nc, we employed the color code [72]. All
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anomalous dimensions on the right-hand sides of eq. (5.21) are known at least to three-
loop order, see appendix A.13 Just like the cusp also the non-cusp anomalous dimension
γSη obeys Casimir scaling up to three loops, i.e.

γSqq̄

CSqq̄
= γSqg

CSqg
= γSgg

CSgg
. (5.23)

Knowing ΓSη we can determine the soft function renormalization factor Zsη via ΓSη =
−d lnZsη/d lnµ. Up to three loops we find [69, 76]14

Zs=1+ αs
4π

(
ΓS′0
4ε2 + ΓS0

2ε

)
+
(
αs
4π

)2
[

(ΓS′0 )2

32ε4 + ΓS′0
8ε3

(
ΓS0−

3
2β0

)
+ ΓS0

8ε2
(
ΓS0−2β0

)
+ ΓS′1

16ε2 + ΓS1
4ε

]

+
(
αs
4π

)3
[

(ΓS′0 )3

384ε6 + (ΓS′0 )2

64ε5
(
ΓS0−3β0

)
+ ΓS′0

32ε4
(

ΓS0−
4
3β0

)(
ΓS0−

11
3 β0

)
+ ΓS′0 ΓS′1

64ε4

+ ΓS0
48ε3

(
ΓS0−2β0

)(
ΓS0−4β0

)
+ ΓS′0

16ε3
(

ΓS1−
16
9 β1

)
+ ΓS′1

32ε3
(

ΓS0−
20
9 β0

)

+ ΓS0 ΓS1
8ε2 −

β0ΓS1 +β1ΓS0
6ε2 + ΓS′2

36ε2 + ΓS2
6ε

]
+O(α4

s), (5.24)

where
ΓS′ ≡ ∂

∂ lnµΓS , (5.25)

and we have expanded the anomalous dimensions as

ΓS =
∞∑
n=0

ΓSn
(
αs
4π

)n+1
, ΓS′ =

∞∑
n=0

ΓS′n
(
αs
4π

)n+1
. (5.26)

As expected, Zs absorbs all divergences of our explicit result for the bare Laplace space
soft function s̃(κ). This represents a strong check of our calculation and at the same time
confirms the universal infrared structure of QCD scattering amplitudes with three massless
parton legs, as predicted by eq. (5.14), at three loops.

5.2 Renormalized results

As mentioned above our results for the bare soft function in the different parton channels are
initially expressed in terms of Nc. In order to rewrite the color factors in terms of (quadratic
and quartic) Casimir invariants we proceed as follows. Non-Abelian exponentiation [66, 67]
restricts the three-loop contribution to our soft function for all parton channels to be a
universal linear combination of the color factors

C3
S , C2

SCA , CSC
2
A , C2

SnfTF , CSCFnfTF , CSCAnfTF , CSn
2
fT

2
F , C3 . (5.27)

First, we discuss how to determine the coefficients of the color factors for nf = 0. For the
gg → g channel we have according to eqs. (5.3) and (5.21) CS = Nc/2 and C3 = −9Nc. So,

13Starting from four loops the cusp and non-cusp anomalous dimensions violate Casimir scaling [73–75].
14For brevity we suppress the subscript η of the soft function in following.
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all color factors except for C3 are proportional to N3
c . We can therefore directly identify

the color tripole contribution ∝ C3 in our soft function result. Once this is fixed we take
our result for the qq̄ → g channel and subtract the tripole term with Cgg3 → Cqq̄3 . The
remaining terms in Sbare

qq̄ can now be uniquely expressed in terms of the dipole-type color
factors in eq. (5.27) using the replacement rules

1
N3
c

→ −8C3
Sqq̄ ,

1
Nc
→ 4C2

Sqq̄CA , Nc → −2CSqq̄C2
A . (5.28)

Concerning the color factors involving nf , we first map the CSCFnfTF contribution to the
nfTFN

0
c term in our result for Sbare

gg . After that we can rewrite the remaining nf dependent
terms in Sbare

qq̄ by replacing

nfTF
N2
c

→ 4C2
Sqq̄nfTF , nfTFN

0
c →−2CSqq̄CAnfTF ,

n2
fT

2
F

Nc
→−2CSqq̄n2

fT
2
F . (5.29)

In this way Sbare
qq̄ is completely expressed in terms of Casimir invariants and matches

eq. (5.1). We successfully checked the universality of this expression against our explicit
results in terms of Nc for Sbare

qg and Sbare
gg by adjusting CS and C3 according to eqs. (5.3)

and (5.21).
Solving the RGE in eq. (5.10) with the anomalous dimension in eq. (5.20), the renor-

malized soft function in Laplace space can be written as

s̃(L, µ) = 1 + αs
4π
[
2Γ0L

2 + 2γS0 L+ cS1

]
+
(
αs
4π

)2
[
2Γ2

0L
4 − 4

3Γ0
(
β0 − 3γS0

)
L3

+ 2
(

Γ0c
S
1 + Γ1 − β0γ

S
0 +

(
γS0

)2
)
L2 + 2

(
cS1

(
γS0 − β0

)
+ γS1

)
L+ cS2

]

+
(
αs
4π

)3
[

4Γ3
0

3 L6 + 4Γ2
0

3
(
3γS0 − 2β0

)
L5 + 2Γ0

3

(
2β2

0 + 3Γ0c
S
1 + 6Γ1 + 6

(
γS0

)2

− 10β0γ
S
0

)
L4 + 4

3

(
3γS0

(
Γ0c

S
1 + Γ1

)
− β0

(
4Γ0c

S
1 + 2Γ1 + 3

(
γS0

)2
)

− Γ0
(
β1 − 3γS1

)
+ 2β2

0γ
S
0 +

(
γS0

)3
)
L3 + 2

(
Γ0c

S
2 + Γ2 + 2γS0 γS1

+ cS1

(
2β2

0 + Γ1 − 3β0γ
S
0 +

(
γS0

)2
)
− β1γ

S
0 − 2β0γ

S
1

)
L2

+ 2
(
cS1

(
γS1 − β1

)
+ cS2

(
γS0 − 2β0

)
+ γS2 + C3f3

)
L+ cS3

]
. (5.30)

Here we have expanded the anomalous dimensions in eq. (5.21) as

Γcusp =
∞∑
n=0

Γn
(
αs
4π

)n+1
, γS =

∞∑
n=0

γSn

(
αs
4π

)n+1
. (5.31)
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Our calculation determines the non-logarithmic terms in eq. (5.30) to be

cS1 = CSπ
2 ,

cS2 = C2
S

π4

2 + CSCA

(
−22ζ3

9 − 14π4

15 + 670π2

108 + 2428
81

)
+ CSnfTF

(
8ζ3
9 −

50π2

27 − 656
81

)
,

cS3 = C3
S

π6

6 + C2
SCA

(
− 22

9 π
2ζ3 −

14π6

15 + 335π4

54 + 2428π2

81

)
+ CSC

2
A

(
1108ζ2

3
9 − 242π2ζ3

27

− 87052ζ3
243 − 572ζ5

9 + 65333π6

51030 − 26153π4

2430 + 256739π2

4374 + 5211949
13122

)

+ CSCFnfTF

(
112π2ζ3

9 + 5680ζ3
81 + 448ζ5

9 + 152π4

405 − 385π2

27 − 42727
243

)

+ CSCAnfTF

(
− 248

27 π
2ζ3 + 2432ζ3

81 − 80ζ5
3 + 464π4

243 − 69254π2

2187 − 825530
6561

)

+ C2
SnfTF

(
8π2ζ3

9 − 50π4

27 − 656π2

81

)
+ CSn

2
fT

2
F

(
3520ζ3

243 + 88π4

243 + 784π2

243 − 1024
6561

)

+ 2C3

(
40ζ2

3
3 − 1031π6

5670

)
, (5.32)

The expression for cS3 is new and represents the main result of this work.

For completeness we also give here the renormalized soft function in momentum space

S(ω, µ) =
∞∑
m=0

(
αs
4π

)m
S(m)(ω, µ) (5.33)

obtained from inverting eq. (5.6). The coefficients in the αs expansion take the form

S(m)(ω, µ) = S
(m)
−1 δ(ω) +

2m−1∑
n=0

S(m)
n L̂n (ω) , (5.34)

with the plus distributions

L̂n (ω) =
[
θ(ω)
ω

lnn
(
ω̂

µ

)]
+

= lim
ε→0

d
dω

[
θ(ω − ε)

lnn+1( ω̂
µ

)
n+ 1

]
. (5.35)

The constants S(m)
n can be expressed in terms of anomalous dimension coefficients and the

– 18 –



J
H
E
P
0
2
(
2
0
2
1
)
1
2
8

cSi in eq. (5.32):

S
(1)
1 = 4Γ0 ,

S
(1)
0 = 2γS0 ,

S
(1)
−1 =−π

2

3 Γ0 +cS1 ,

S
(2)
3 = 8Γ2

0 ,

S
(2)
2 = 4Γ0

(
3γS0 −β0

)
,

S
(2)
1 = 4Γ1 +4Γ0

(
cS1 −π2Γ0

)
+4γS0

(
γS0 −β0

)
,

S
(2)
0 = 2Γ0

(
8ζ3Γ0 + π2

3 β0−π2γS0

)
+2γS1 +2cS1

(
γS0 −β0

)
,

S
(2)
−1 = π4

30Γ2
0−

π2

3 Γ1 +8ζ3Γ0

(
γS0 −

β0
3

)
+ π2

3 γ
S
0

(
β0−γS0

)
− π

2

3 Γ0c
S
1 +cS2 ,

S
(3)
5 = 8Γ3

0 ,

S
(3)
4 = 20Γ2

0

(
γS0 −

2
3β0

)
,

S
(3)
3 = 16Γ0

[
β2

0
3 +Γ1 +γS0

(
γS0 −

5
3β0

)]
+8Γ2

0

(
cS1 −

5π2

3 Γ0

)
,

S
(3)
2 = 20Γ2

0

[
8ζ3Γ0 +π2

(2
3β0−γS0

)]
+4Γ0

[
3γS1 −β1 +cS1

(
3γS0 −4β0

)]
+4

(
γS0

)3

+4
(
β0γ

S
0 −Γ1

)(
2β0−3γS0

)
,

S
(3)
1 = 4Γ2 + 2π4

3 Γ3
0 +160ζ3Γ2

0

(
γS0 −

2β0
3

)
+8π2Γ0

[
−β

2
0

3 −Γ1 + 5
3β0γ

S
0 −

(
γS0

)2
]

−8β0γ
S
1 +4γS0

(
2γS1 −β1

)
+4cS1

[(
2β0−γS0

)(
β0−γS0

)
−π2Γ2

0 +Γ1
]
+4Γ0c

S
2 ,

S
(3)
0 = 16Γ3

0

(
12ζ5−

5π2ζ3
3

)
+ π4

3 Γ2
0

(
γS0 −

2
3β0

)
+2π2Γ1

(2
3β0−γS0

)
+2π2Γ0

(
β1
3 −γ

S
1

)

+32ζ3Γ0

[
β2

0
3 +Γ1−

5
3β0γ

S
0 +

(
γS0

)2
]

+2γS2 −
2π2

3 γS0

(
2β0−γS0

)(
β0−γS0

)
+2cS1

[
−β1 +8ζ3Γ2

0 +π2Γ0

(4
3β0−γS0

)
+γS1

]
+2cS2

(
γS0 −2β0

)
+2C3f3 ,

S
(3)
−1 = 5

3Γ3
0

(
32ζ2

3−
π6

42

)
+Γ2

0

(
40π2ζ3

3 −96ζ5

)(2
3β0−γS0

)
+8ζ3Γ1

(
γS0 −

2
3β0

)

− π
2

3 Γ2 +Γ0

[
π4

45

(
β2

0−5β0γ
S
0 +3

(
γS0

)2
+3Γ1

)
+8ζ3

(
γS1 −

β1
3

)]

+ 8ζ3
3 γS0

(
2β0−γS0

)(
β0−γS0

)
+ π2

3 γ
S
0

(
β1−2γS1

)
+ 2π2

3 β0γ
S
1 −

π2

3 Γ0c
S
2 +cS3

+cS1

[
π4

30Γ2
0−

π2

3 Γ1 +8ζ3Γ0

(
γS0 −

4
3β0

)
− π

2

3
(
2β0−γS0

)(
β0−γS0

)]
. (5.36)
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6 Conclusion

We have calculated the universal three-loop soft function contributing to factorized cross
sections for EW boson production in the (threshold) limit, where the transverse momentum
of the boson is close to its kinematically allowed maximum for a given (not too large)
rapidity. To the best of our knowledge this represents the first result of a soft function
for a three-parton process at three loops. We have derived a novel expression for the soft
function in terms of a forward-scattering-type matrix element of Wilson line operators. This
allowed us to avoid any phase space integrations and to straight-forwardly take advantage
of well-established multi-loop technology in our calculation.

We present our results for the renormalized soft function both in Laplace space and mo-
mentum space in section 5.2. The three-loop non-logarithmic terms in eq. (5.32) represent
the genuinely new information at this order. Our explicit three-loop calculation validates
the relation between the anomalous dimensions of the PDFs and the corresponding hard,
jet, and soft functions inferred from RG consistency of the near-threshold cross section. In
this way we also confirm the nonzero (Casimir scaling violating) color tripole contribution
to the three-loop soft and corresponding hard anomalous dimensions found in ref. [71].

The threshold approximation of the EW boson production cross section is strictly
valid when the invariant mass of the hadronic radiation (including the proton remnants) is
small compared to the transverse momentum of the boson. Phenomenologically, however,
it usually performs well even far away from this limit, see e.g. refs. [25, 26]. Together
with the three-loop jet function [34, 35] and the yet-unknown three-loop hard function
our soft function result will allow to determine the N3LO corrections to the transverse-
momentum spectra of γ, W±, Z and Higgs bosons in the (far-)tail region. Furthermore,
it is necessary to carry out the resummation of threshold logarithms to N3LL′ (or N4LL)
accuracy. Once the QCD three-loop virtual corrections to the qq̄ → Y g (or crossing-
symmetric) and gg → Hg scattering amplitudes, i.e. the hard functions, become available,
this may constitute significant progress in the precision phenomenology for Higgs, photon
and EW gauge boson production in association with a jet at the LHC.
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A Three-loop anomalous dimensions

For completeness we list here the explicit expressions for all anomalous dimensions in
eq. (5.21) to three-loop order. The convention for the loop expansions is analogous to
eqs. (5.26) and (5.31). The coefficients of the cusp anomalous dimension are [78, 79]

γcusp
0 = 4 , (A.1)

γcusp
1 =

(268
9 − 4π2

3

)
CA −

80
9 TFnf , (A.2)

γcusp
2 = C2

A

(
490
3 − 536π2

27 + 44π4

45 + 88
3 ζ3

)
+ CATFnf

(
−1672

27 + 160π2

27 − 224
3 ζ3

)

+ CFTFnf

(
−220

3 + 64ζ3

)
− 64

27 T
2
Fn

2
f . (A.3)

The coefficients of the soft non-cusp anomalous dimension γS are [18]

γS0 = 0 , (A.4)

γS1 = CS

[
CA

(
28ζ3 + 11π2

9 − 808
27

)
+ nfTF

(
224
27 −

4π2

9

)]
, (A.5)

γS2 = CS

[
C2
A

(
−88

9 π
2ζ3 + 1316ζ3

3 − 192ζ5 −
88π4

45 + 6325π2

243 − 136781
729

)
(A.6)

+ CAnfTF

(
−1456ζ3

27 + 16π4

15 − 2828π2

243 + 23684
729

)

+ CFnfTF

(
3422
27 − 4π2

3 − 608ζ3
9 − 16π4

45

)
+ n2

fT
2
F

(
8320
729 + 80π2

81 − 448ζ3
27

)]
.

The hard anomalous dimensions γq and γg can be determined [69] from the divergent part
of the on-shell quark and gluon form factors in QCD [80, 81] and read up to three loops

γq0 =−3CF , (A.7)

γq1 =C2
F

(
−3

2 +2π2−24ζ3

)
+CFCA

(
−961

54 −
11π2

6 +26ζ3

)

+CFTFnf

(
130
27 + 2π2

3

)
, (A.8)

γq2 =C3
F

(
−29

2 −3π2− 8π4

5 −68ζ3 + 16π2

3 ζ3 +240ζ5

)

+C2
FCA

(
−151

4 + 205π2

9 + 247π4

135 −
844
3 ζ3−

8π2

3 ζ3−120ζ5

)

+CFC
2
A

(
−139345

2916 −
7163π2

486 − 83π4

90 + 3526
9 ζ3−

44π2

9 ζ3−136ζ5

)

+C2
FTFnf

(
2953
27 −

26π2

9 − 28π4

27 + 512
9 ζ3

)
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+CFCATFnf

(
−17318

729 + 2594π2

243 + 22π4

45 −
1928
27 ζ3

)

+CFT
2
Fn

2
f

(
9668
729 −

40π2

27 −
32
27 ζ3

)
, (A.9)

γg0 =−β0 =−11
3 CA+ 4

3 TFnf , (A.10)

γg1 =C2
A

(
−692

27 + 11π2

18 +2ζ3

)
+CATFnf

(
256
27 −

2π2

9

)
+4CFTFnf , (A.11)

γg2 =C3
A

(
−97186

729 + 6109π2

486 − 319π4

270 + 122
3 ζ3−

20π2

9 ζ3−16ζ5

)

+C2
ATFnf

(
30715
729 −

1198π2

243 + 82π4

135 + 712
27 ζ3

)

+CACFTFnf

(
2434
27 −

2π2

3 −
8π4

45 −
304
9 ζ3

)
−2C2

FTFnf

+CAT
2
Fn

2
f

(
−538

729 + 40π2

81 −
224
27 ζ3

)
− 44

9 CFT
2
Fn

2
f . (A.12)

At three loops the anomalous dimensions of the quark and gluon jet functions were derived
in refs. [18, 68] based on RG consistency arguments and confirmed by the jet function
calculations in refs. [34, 35]. Their coefficients are

γ
Jq
0 = −3CF , (A.13)

γ
Jq
1 = C2

F

(
−3

2 + 2π2 − 24ζ3

)
+ CFCA

(
−1769

54 − 11π2

9 + 40ζ3

)

+ CFTFnf

(
242
27 + 4π2

9

)
, (A.14)

γ
Jq
2 = C3

F

(
−29

2 − 3π2 − 8π4

5 − 68ζ3 + 16π2

3 ζ3 + 240ζ5

)

+ C2
FCA

(
−151

4 + 205π2

9 + 247π4

135 − 844
3 ζ3 −

8π2

3 ζ3 − 120ζ5

)

+ CFC
2
A

(
−412907

2916 − 419π2

243 − 19π4

10 + 5500
9 ζ3 −

88π2

9 ζ3 − 232ζ5

)

+ C2
FTFnf

(
4664
27 − 32π2

9 − 164π4

135 + 208
9 ζ3

)

+ CFCATFnf

(
−5476

729 + 1180π2

243 + 46π4

45 − 2656
27 ζ3

)

+ CFT
2
Fn

2
f

(
13828
729 − 80π2

81 − 256
27 ζ3

)
, (A.15)
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and

γ
Jg
0 =−β0 , (A.16)

γ
Jg
1 =C2

A

(
−1096

27 + 11π2

9 +16ζ3

)
+CAnfTF

(
368
27 −

4π2

9

)
+4CFTFnf , (A.17)

γ
Jg
2 =

(
−331153

1458 + 6217π2

243 +260ζ3−
583π4

270 −
64π2ζ3

9 −112ζ5

)
C3
A

+
(

42557
729 −

2612
243 −

16ζ3
27 + 154π4

135

)
C2
AnfTF +

(
3622
729 + 80π2

81 −
448ζ3

27

)
CAn

2
fT

2
F

+
(

4145
27 −

4π2

3 −
608ζ3

9 − 16π4

45

)
CACFnfTF −2C2

FnfTF −
44
9 CFn

2
FT

2
F , (A.18)

respectively. The anomalous dimensions describing the evolution of the quark and gluon
PDFs near x → 1 can be determined from the QCD splitting functions [79, 82] and were
extracted in refs. [83, 84] up to three-loop order:

γ
fq
0 = 3CF , (A.19)

γ
fq
1 = C2

F

(3
2 − 2π2 + 24ζ3

)
+ CFCA

(
17
6 + 22π2

9 − 12ζ3

)

− CFTFnf

(
2
3 + 8π2

9

)
, (A.20)

γ
fq
2 = C3

F

(
29
2 + 3π2 + 8π4

5 + 68ζ3 −
16π2

3 ζ3 − 240ζ5

)

+ C2
FCA

(
151
4 − 205π2

9 − 247π4

135 + 844
3 ζ3 + 8π2

3 ζ3 + 120ζ5

)

+ C2
FTFnf

(
−46 + 20π2

9 + 116π4

135 − 272
3 ζ3

)

+ CFC
2
A

(
−1657

36 + 2248π2

81 − π4

18 −
1552

9 ζ3 + 40ζ5

)

+ CFCATFnf

(
40− 1336π2

81 + 2π4

45 + 400
9 ζ3

)

+ CFT
2
Fn

2
f

(
−68

9 + 160π2

81 − 64
9 ζ3

)
, (A.21)

γ
fg
0 = 11

3 CA −
4
3 TFnf = β0 , (A.22)

γ
fg
1 = 4C2

A

(8
3 + 3ζ3

)
− 16

3 CATFnf − 4CFTFnf , (A.23)
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γ
fg
2 = C3

A

[
79
2 + 4π2

9 + 11π4

54 +
(

536
3 − 8π2

3

)
ζ3 − 80ζ5

]

− C2
ATFnf

(
233
9 + 8π2

9 + 2π4

27 + 160
3 ζ3

)

− 241
9 CACFTFnf + 2C2

FTFnf + 58
9 CAT

2
Fn

2
f + 44

9 CFT
2
Fn

2
f . (A.24)

B Bare data

Here we present our expressions for the coefficients of the different color structures in the
bare soft function, eq. (5.1). We show the results as an expansion in ε = (4 − d)/2 to the
order required for the calculation of the renormalized three-loop soft function:

KS = − 8
ε

+ 2π2ε

3 + 56ζ3ε
2

3 + 47π4ε3

180 +
(

248ζ5
5 − 14π2ζ3

9

)
ε4 +

(
949π6

15120 −
196ζ2

3
9

)
ε5

+O
(
ε6
)
, (B.1)

KSS = − 32
ε3

+ 80π2

3ε + 1984ζ3
3 + 100π4ε

9 +
(

32704ζ5
5 − 4960π2ζ3

9

)
ε2

+
(

482π6

63 − 61504ζ2
3

9

)
ε3 +O

(
ε4
)
, (B.2)

KSA = − 44
3ε2 + 1

ε

(
4π2

3 −
268
9

)
+
(

56ζ3 + 22π2

3 − 1616
27

)
+
(

2728ζ3
9 + 88π4

45 + 134π2

9

− 9712
81

)
ε+
(

16616ζ3
27 − 716π2ζ3

9 +296ζ5 + 649π4

90 + 808π2

27 − 58304
243

)
ε2

+
(
− 3688ζ2

3
3 + 100192ζ3

81 − 1364π2ζ3
9 + 44968ζ5

15 − 377π6

1890 + 3953π4

270 + 4856π2

81

− 349888
729

)
ε3 +O

(
ε4
)
, (B.3)

KSf = 16
3ε2 + 80

9ε +
(

448
27 −

8π2

3

)
+
(
− 992ζ3

9 − 40π2

9 + 2624
81

)
ε

+
(
− 4960ζ3

27 − 118π4

45 − 224π2

27 + 15616
243

)
ε2

+
(

496π2ζ3
9 − 27776ζ3

81 − 16352ζ5
15 − 118π4

27 − 1312π2

81 + 93440
729

)
ε3 +O

(
ε4
)
, (B.4)

KSSS = − 64
ε5

+ 144π2

ε3
+ 4544ζ3

ε2
+ 334π4

5ε +
(

497472ζ5
5 −10224π2ζ3

)

+
(

83933π6

630 −161312ζ2
3

)
ε+O

(
ε2
)
, (B.5)
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KSSA = − 88
ε4

+ 1
ε3

(
8π2− 536

3

)
+ 1
ε2

(
336ζ3 + 506π2

3 − 3232
9

)

+ 1
ε

(
6248ζ3 + 2π4

5 + 3082π2

9 − 19424
27

)

+
(

38056
3 ζ3−1356π2ζ3 +1776ζ5 + 8767π4

60 + 18584π2

27 − 116608
81

)

+
(
−24288ζ2

3 + 229472
9 ζ3−

35926
3 π2ζ3 + 684024ζ5

5 − 4597π6

140 + 53399π4

180

+ 111688π2

81 − 699776
243

)
ε+O

(
ε2
)
, (B.6)

KSAA = − 968
27ε3 + 1

ε2

(
176π2

27 − 13016
81

)
+ 1
ε

(
3520ζ3

9 − 88π4

135 + 4702π2

81 − 44372
81

)

+
(

10376
3 ζ3−

176
9 π2ζ3−384ζ5 + 88π4

5 + 55202π2

243 − 1235050
729

)

+
(
− 2216ζ2

3
3 + 1089896

81 ζ3−
11968

9 π2ζ3 + 10912ζ5
3 − 48701π6

8505 + 198197π4

1620

+ 541345π2

729 − 10984045
2187

)
ε+O

(
ε2
)
, (B.7)

KSSf = 32
ε4

+ 160
3ε3 + 1

ε2

(
896
9 −

184π2

3

)
+ 1
ε

(
−2272ζ3−

920π2

9 + 5248
27

)

+
(
− 11360ζ3

3 − 797π4

15 − 5152π2

27 + 31232
81

)

+
(

13064π2ζ3
3 − 63616ζ3

9 − 248736ζ5
5 − 797π4

9 − 30176π2

81 + 186880
243

)
ε

+O
(
ε2
)
, (B.8)

KSFf = 16
3ε2 + 1

ε

(
440
9 −

128ζ3
3

)
+
(
− 1216ζ3

9 − 32π4

45 −
20π2

3 + 6844
27

)

+
(

160π2ζ3
3 − 21296ζ3

27 − 896ζ5
3 − 304π4

135 −
550π2

9 + 85454
81

)
ε+O

(
ε2
)
, (B.9)

KSAf = 704
27ε3 + 1

ε2

(
8528
81 −

64π2

27

)
+ 1
ε

(
− 896ζ3

9 − 2960π2

81 + 26128
81

)
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+
(
− 53600ζ3

27 − 256π4

45 − 33628π2

243 + 656776
729

)

+
(

3872π2ζ3
9 − 22768ζ3

3 −1024ζ5−
5710π4

81 − 310628π2

729 + 5295988
2187

)
ε

+O
(
ε2
)
, (B.10)

KSff = − 128
27ε3 −

1280
81ε2 + 1

ε

(
160π2

27 − 128
3

)
+
(

8320ζ3
27 + 1600π2

81 − 77824
729

)

+
(

83200ζ3
81 + 868π4

81 + 160π2

3 − 560128
2187

)
ε+O

(
ε2
)
. (B.11)

C Definition of integral families

In section 4, we defined one integral family for illustration. All eleven families share
the same propagator denominators D1,··· ,6. Here we present the definition of the other
propagator denominators D7,··· ,15 for the remaining ten families.
Family 2:

D7 = −n1 ·k1 , D8 = −n1 ·k2 , D9 = −n1 ·k3 ,

D10 = −n2 ·(k3 − k1) , D11 = −n2 ·(k3 − k2) , D12 = −n2 ·k3 , (C.1)
D13 = −nJ ·k1 − ω , D14 = −nJ ·k2 − ω , D15 = −nJ ·k3 − ω .

Family 3:

D7 = −n1 ·k1 , D8 = −n1 ·k2 , D9 = −n1 ·(k3 − k2) ,
D10 = −n2 ·k1 , D11 = −n2 ·k2 , D12 = −n2 ·(k3 − k2) , (C.2)
D13 = −nJ ·k1 − ω , D14 = −nJ ·k2 − ω , D15 = −nJ ·k3 − ω .

Family 4:

D7 = −n1 ·k1 , D8 = −n1 ·(k3 − k2) , D9 = −n1 ·k3 ,

D10 = n2 ·k1 , D11 = −n2 ·(k2 − k1) , D12 = −n2 ·(k3 − k1) , (C.3)
D13 = −nJ ·k3 − ω , D14 = −nJ ·(k3 − k2)− ω , D15 = −nJ ·(k3 − k1)− ω .

Family 5:

D7 = −n1 ·k1 , D8 = −n1 ·k2 , D9 = −n1 ·k3 ,

D10 = −n2 ·(k1 − k2) , D11 = −n2 ·(k3 − k2) , D12 = −n2 ·k3 , (C.4)
D13 = −nJ ·k1 − ω , D14 = −nJ ·k2 − ω , D15 = −nJ ·k3 − ω .

Family 6:

D7 = −n1 ·k1 , D8 = −n1 ·(k1 − k2) , D9 = −n1 ·(k3 − k2) ,
D10 = −n2 ·k2 , D11 = −n2 ·k3 , D12 = −n2 ·(k3 − k1) , (C.5)
D13 = −nJ ·k1 − ω , D14 = −nJ ·k2 − ω , D15 = −nJ ·k3 − ω .
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n1 n1

n2 n2

nJ

Figure 5. Three-loop Feynman diagram with imaginary part for n12 > 0.

Family 7:

D7 = −n1 ·k1 , D8 = −n1 ·(k1 − k3) , D9 = −n1 ·(k2 − k3) ,
D10 = −n2 ·k1 , D11 = −n2 ·(k1 − k2) , D12 = −n2 ·(k1 − k3) , (C.6)
D13 = −nJ ·k1 − ω , D14 = −nJ ·(k1 − k3)− ω , D15 = −nJ ·(k2 − k3)− ω .

Family 8:

D7 = −n1 ·k1 , D8 = −n1 ·k2 , D9 = −n1 ·k3 ,

D10 = −n2 ·(k2 − k1) , D11 = −n2 ·(k3 − k1) , D12 = −n2 ·k3 , (C.7)
D13 = −nJ ·(k3 − k1)− ω , D14 = −nJ ·k2 − ω , D15 = −nJ ·k3 − ω .

Family 9:

D7 = −n1 ·k1 , D8 = −n1 ·(k3 − k1) , D9 = −n1 ·(k3 − k2) ,
D10 = −n2 ·k1 , D11 = −n2 ·(k3 − k1) , D12 = −n2 ·(k2 − k1) , (C.8)
D13 = −nJ ·k3 − ω , D14 = −nJ ·(k3 − k1)− ω , D15 = −nJ ·(k3 − k2)− ω .

Family 10:

D7 = −n1 ·(k1 − k2) , D8 = −n1 ·(k3 − k2) , D9 = −n1 ·k3 ,

D10 = −n2 ·k1 , D11 = −n2 ·(k1 − k2) , D12 = −n2 ·k3 , (C.9)
D13 = −nJ ·k1 − ω , D14 = −nJ ·(k1 − k2)− ω , D15 = −nJ ·k3 − ω .

Family 11:

D7 = −n1 ·(k1 − k2) , D8 = −n1 ·k2 , D9 = −n1 ·(k1 − k3) ,
D10 = −n2 ·(k1 − k2) , D11 = −n2 ·(k3 − k2) , D12 = −n2 ·k3 , (C.10)
D13 = −nJ ·k1 − ω , D14 = −nJ ·k2 − ω , D15 = −nJ ·(k1 − k2 + k3)− ω .

D Feynman parameter integrations with HyperInt

Here we demonstrate the calculation of the three-loop MIs with an imaginary part related
to a physical threshold (similar to the two-loop example in section 3) using HyperInt [62].
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As a concrete example we consider one of the most complicated MIs of this kind, namely the
integral G[6]

1,1,0,1,1,1,1,0,1,1,0,1,0,0,1 in family 6,15 which contributes to the Feynman diagram
in figure 5. The corresponding U and F polynomials in the Feynman parameter (xi)
representation, see e.g. ref. [85], are given by

U = x1x2x5 + x1x4x5 + x2x4x5 + x1x6x5 + x2x6x5 + x1x2x6 + x1x4x6 + x2x4x6 , (D.1)

F = n12
2 x4x5x7x10 + n12

2 x4x6x7x10 + n12
2 x5x6x7x10 −

n12
2 x1x6x9x10 −

n12
2 x2x5x7x12

+ n12
2 x1x2x9x12 + n12

2 x1x4x9x12 + n12
2 x2x4x9x12 + x1x5x10x15 + x4x5x15x10

+ x5x6x10x15 + x1x2x5x15 + x1x4x5x15 + x2x4x5x15 + x1x2x6x15 + x1x4x6x15

+ x2x4x6x15 + x1x5x6x15 + x2x5x6x15 + x4x5x7x15 + x2x6x7x15 + x4x6x7x15

+ x5x6x7x15 + x1x2x9x15 + x1x4x9x15 + x2x4x9x15 + x2x6x9x15 + x1x2x12x15

+ x1x4x12x15 + x2x4x12x15 + x1x5x12x15 + x4x6x10x15 , (D.2)

where we set n2
1 = n2

2 = n2
J = 0, n1J = n2J = 2, ω = −1 for convenience. The dependence

on these variables can be easily restored according to eq. (4.4). The index i of the xi refers
to the corresponding propagator in family 6. Note that our definition of the integrals in
eq. (4.2) implies that an infinitesimal −i0 is to be added to F in eq. (D.2).

By a dimensional recurrence relation, G[6]
1,1,0,1,1,1,1,0,1,1,0,1,0,0,1 can be related to the in-

tegral G[6]
2,1,0,2,2,1,1,0,1,1,0,2,0,0,4, which is finite in d = 8−2ε dimensions, and less complicated

already known integrals. The coefficients of the integrals in such relations are real and only
depend on d. Regardless of the sign of n12, the F polynomial becomes negative in certain
integration regions. We now exploit the projective nature of the Feynman parameter repre-
sentation [85] by fixing x4 = 1 and are left with the integrations over the remaining xi from
0 to +∞. For n12 = 2 and dropping the infinitesimal −i0 HyperInt manages to perform
the x7, x9, x15, x10, x12, x1, x2, x5, x6 integrations in that order. Because we have removed
the infinitesimal −i0, HyperInt automatically adds an imaginary infinitesimal δx6 iε with
δx6 = ±1 to the parameter x6 in order to deform the integration contour away from an
(integrable) threshold singularity for F → 0. Note that, in contrast to the original integral
with fixed −i0, the sign of the imaginary infinitesimal now depends on the integration
region. The HyperInt output will therefore in general differ from the integral we aim to
compute. This difference however only affects the imaginary part of the integral, which is
irrelevant for our purpose as discussed in section 4. The real part agrees with the original

15Here we use the notation G
[6]
a1,...,e3 ≡ G(a1, . . . , e3) for the integrals in family 6 defined according to

eq. (4.2).
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one. To see this we write

Re
[
G(~a,~b,~c,~e, ε)

]
= 1

2
(
G(~a,~b,~c,~e, ε)

∣∣
+i0 +G(~a,~b,~c,~e, ε)

∣∣
−i0

)
= 1

2
(
G(~a,~b,~c,~e, ε)

∣∣>
+i0 +G(~a,~b,~c,~e, ε)

∣∣<
+i0

+G(~a,~b,~c,~e, ε)
∣∣>
−i0 +G(~a,~b,~c,~e, ε)

∣∣<
−i0

)
= 1

2
(
G(~a,~b,~c,~e, ε)

∣∣>
+δxk iε +G(~a,~b,~c,~e, ε)

∣∣<
−δxkiε

+G(~a,~b,~c,~e, ε)
∣∣>
−δxkiε

+G(~a,~b,~c,~e, ε)
∣∣<
+δxkiε

)
= Re

[
G(~a,~b,~c,~e, ε)

∣∣>
+δxkiε

+G(~a,~b,~c,~e, ε)
∣∣<
+δxkiε

]
= Re

[
G(~a,~b,~c,~e, ε)

∣∣
+δxkiε

]
(D.3)

for a generic integral G.16 The subscript indicates whether the integral is evaluated with
fixed ±i0 or an imaginary infinitesimal δxk iε added to the Feynman parameter xk in the F
polynomial. The > (<) superscript indicates the contribution from all integration regions,
where the coefficient of xk (and therefore of δxk iε) is positive (negative). We have checked
eq. (D.3) by computing our quasi-finite integrals for different xi initially fixed to one and
different integration orders, which causes HyperInt to assign the δxk iε to different xk. In
most cases we found a configuration, where HyperInt adds the imaginary infinitesimal to
a Feynman parameter with positive definite coefficient, which is equivalent to a fixed −i0
in the F polynomial. In this way we explicitly confirmed that it is irrelevant for the real
part of the result whether the coefficient of the δxk iε is positive or varies in sign depending
on the integration region.

With the output from HyperInt we obtain for our concrete example in d = 8 − 2ε
dimensions (δ2

x6 = 1),

Re
[
G[6]

2,1,0,2,2,1,1,0,1,1,0,2,0,0,4
]

=
(

1
72 + 7π2

72

)
ζ3 −

25ζ5
72 −

29π4

8640 −
11π2

432 + π2

48δ
2
x6

+
[
π2

18ζ1,−3 + 17ζ2
3

288 −
611π2ζ3

1728 + 221ζ3
216 −

1693ζ5
1728 + 2021π6

544320 −
π4

64 −
823π2

5184

+ 7π2

24 ln 2 +
(

3π2ζ3
16 − π6

540 + π4

288 + 17π2

192

)
δ2
x6

]
ε

+
[

7ζ3
36 ζ1,−3 −

257π2

432 ζ1,−3 −
7
12ζ1,−3 + 28

51ζ1,1,−5 −
π2

18ζ1,1,−3 −
14
153ζ1,3,−3

− 10417ζ2
3

6912 + 29215π4ζ3
88128 − 1937π2ζ3

2592 + 5627ζ3
1296 + 30181π2ζ5

58752

− 2111ζ5
1296 −

335531ζ7
39168 − 53731π6

1306368 + 3869π4

25920 −
14965π2

31104
16On the other hand we have Im

[
G(~a,~b,~c, ~e, ε)

∣∣
−i0

]
= Im

[
G(~a,~b,~c, ~e, ε)

∣∣>
−δxk

iε

]
−

Im
[
+G(~a,~b,~c, ~e, ε)

∣∣<
−δxk

iε

]
.

– 29 –



J
H
E
P
0
2
(
2
0
2
1
)
1
2
8

+
(

49ζ3
48 + 71π2

48

)
ln 2 + 7π2

48 ln2 2 +
(
−π

4

4 ζ3 + π6

48 −
π4

24

)
δ4
x6

+
(

29π4ζ3
96 + 9π2ζ3

16 + 7π2ζ5
32 − 113π6

103680 −
187π4

864 + 355π2

1152

)
δ2
x6

]
ε2

+O(ε3) , (D.4)

where we give all terms in the ε expansion required for our soft function calculation. Note
that the multiple zeta values, the ln 2 terms, and the terms of transcendental weight > 6
cancel among the different MIs and do not appear in the final result for the soft function.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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