Swiss Journal of Economics and Statistics

, Volume 148, Issue 2, pp 275–316 | Cite as

Swiss Climate Change and Nuclear Policy: A Comparative Analysis Using an Energy System Approach and a Sectoral Electricity Model

  • Nicolas Weidmann
  • Ramachandran Kannan
  • Hal Turton
Open Access


Decisions on climate change and nuclear policies are likely to have major influences on the future evolution of the Swiss energy system. To understand the implications of selected future policy decisions, we analyse the development of the Swiss energy system with a bottom-up technology-rich least-cost optimisation modelling framework. We use the Swiss MARKAL energy system model and analyse a stringent climate change mitigation policy with two policy variants on the availability of nuclear energy, i.e. with and without nuclear new builds. The energy system modelling approach provides insights into system-wide energy pathways, technology choice and cross-sectoral trade-offs like resource competition, electrification, and CO2 mitigation options across supply and demand sectors. To complement the full system approach, we apply an experimental TIMES model — a successor to MARKAL — of the Swiss electricity sector with a detailed representation of the electricity load curve accounting for diurnal and seasonal variations in demand and resource supply. The analytical results from both modelling approaches are presented and the electricity sector results compared to illustrate the complementary policy insights. The implications for realising an ambitious climate target with and without investment in new nuclear plants are discussed, and a number of areas for possible policy support identified.


MARKAL energy system model TIMES electricity model Swiss climate policy Scenario analysis 


Q40 Q41 Q42 Q49 Q54 Q56 


  1. ADAM — Adaptation and Mitigation Strategies: Supporting European climate policy” (2010), <>.
  2. BfE — Bundesamt für Energie (2010a), „Schweizerische Gesamtenergiestatistik“ (2000–2010), Bern. <>.
  3. BfE — Bundesamt für Energie (2010b), „Gesamte Erzeugung und Abgabe Elektrischer Energie in der Schweiz“ (2000–2010), Bern. <>.
  4. BfE — Bundesamt für Energie (2004), „Ausbaupotential der Wasserkraft“, Bern.Google Scholar
  5. BfE — Bundesamt für Energie (2007), „Die Energieperspektiven 2035“, Bern.Google Scholar
  6. BfE — Bundesamt für Energie (2011a), „Medienmitteilung: Bundesrat beschliesst im Rahmen der neuen Energiestrategie schrittweisen Ausstieg aus der Kernenergie“, Bern, 25.05.2011.Google Scholar
  7. BfE — Bundesamt für Energie (2011b), „Grundlagen für die Energiestrategie des Bundesrates“; Frühjahr 2011
  8. BfS — Bundesamt für Statistik (2001), „Bevölkerungsentwicklung der Schweiz“, DEMOS: Informationen aud der Demografie No 1+2/2001, Neuchâtel.Google Scholar
  9. ENTSOE — “European Network of Transmission System Operators for Electricity” (2010), Scholar
  10. ETS — Der Energie Trialog Schweiz (2009), „Energie-Strategie 2050 — Impulse für die schweizerische Energiepolitik“. Grundlagenbericht, <>.
  11. Häring, M. O., F. Lander, U. Schanz and T. Spillmann (2009), “Deep Heat Mining Basel — Preliminary Results”. <>.
  12. Hirschberg, S., R. Dones, T. Heck, P. Burgherr, W. Schenler, and C. Bauer (2004), “Sustainability of Electricity Supply Technologies under German Conditions: A Comparative Evaluation”. PSI-Report No.04-15. Paul Scherrer Institut, Villigen PSI, Switzerland.Google Scholar
  13. IEA — International Energy Agency (2009), Word Energy Outlook.Google Scholar
  14. JRC — Joint Research Centre (2009), Photovoltaic Geographical Information System (PVGIS): Geographical Assessment of Solar Resource and Performance of Photovoltaic Technology, <> [September 2009].
  15. Kannan, R. (2009), “Uncertainties in Key Low Carbon Power Generation Technologies — Implication for UK Decarbonisation Targets”, Applied Energy 86 (10): 1873–1886.Google Scholar
  16. Kannan, R. (2011), “The Development and Application of a Temporal MARKAL Energy System Model Using Flexible Time Slicing”, Applied Energy 88 (6):2261–2272.CrossRefGoogle Scholar
  17. Kannan, R., and Turton H. (2011), “Documentation on the Development of Swiss TIMES Electricity Model (STEM-E)”, Paul Scherrer Institut, Switzerland.Google Scholar
  18. Labriet, M. (2003), “Switzerland MARKAL Structure and Assumptions”, Technical Report (not published), 2.0. Geneva: University of Geneva (LOGI-LAB), 2003.Google Scholar
  19. Loulou, R., U. Remme, A. Kanudia, A. Lehtila, and G. Goldstein (2005), “Documentation for the TIMES Model”, Energy Technology Systems Analysis Programme. <>.
  20. Marcucci, A., Turton, H., (2011), “Swiss Energy Strategies under Global Climate Change and Nuclear Policy Uncertainty”. Swiss Journal of Economics and Statistics, vol. 148(2), pp. 317–345.CrossRefGoogle Scholar
  21. OcCC — The Advisory Body on Climate Change (2007), Medieninformation: OcCC-Stellungsnahme zur Ausgestaltung der „Schweizerischen Klimapolitik post 2012“, Bern [24.8.2007].Google Scholar
  22. Odenberger, M., and T. Unger (2011), “The Role of New Interconnectors in European Energy Pathways: Pathways to Sustainable European Energy System”, in F. Johnsonn (2011) Methods and Models used in the project used in the project Pathways to Sustainable European Energy Systems), Alliance for Global Sustainability. <>.
  23. Prognos (2011), „Kosten neuer Kernkraftwerke“, Basel, February.Google Scholar
  24. PSI — Paul Scherrer Institut (2010), „Energie-Spiegel“, No.20,. <>.
  25. SAAS — Swiss Acadaemies of Arts and Sciences (2009), Stellungnahme: Vernehmlassung zur Revision CO2-Gesetz: Antwort der Akademien Schweiz. Bern, 17.3.2009.Google Scholar
  26. SATW — Swiss Academy of Engineering Sciences (2007), “Road Map-Renewable Energies Switzerland: An analysis with a view to harnessing existing potentials by 2050”.Google Scholar
  27. Sceia, A., Altamirano-Cabrera, J.-C., Vielle, M., Weidmann, N., (2009), “Assessment of Acceptable Swiss post-2012 Climate Policies with a Hybrid Model”, NCCR-Climate Working Paper 2009/04.Google Scholar
  28. Schulz, T. F. (2007), “Intermediate Steps to the 2000 Watt Society in Switzerland: An Energy-Economic Scenario Analysis”. DISS ETH NO 17314, ETH Zürich, 2007.Google Scholar
  29. Schulz, T. F., Barreto, L., Kypreos, S., Stucki, S., (2007), “Assessing Wood-Based Synthetic Natural Gas Technologies Using the SWISS-MARKAL Model”. Energy 32 (10): 1948–1959.CrossRefGoogle Scholar
  30. Schulz, T. F., Kypreos, S., Barreto, L., Wokaun, A. (2008), “Intermediate Steps Towards a 2000 Watt Society in Switzerland: An Energy-Economic Scenario Analysis”. Energy Policy 36 (4):1303–1317.CrossRefGoogle Scholar
  31. SNB — Swiss National Bank (2010), Historical Time Series 4: Interest Rates and Yields, Table 2.1 Money Market Rates, in CHF. <> [10 August 2010].
  32. Swiss Grid (2008), Informationsveranstaltung Bilanzgruppenmanagement, <>.
  33. Weidmann, N., Turton, H., Wokaun, A., (2009), “Case Studies of the Swiss Energy System — Sensitivity to Scenario Assumptions Assessed with the Swiss MARKAL Model”. Studie im Auftrag des Energie Trialog Schweiz. Paul Scherrer Institut, Villigen PSI, Switzerland <>.Google Scholar
  34. (2010), Die Website für Windenergie-Daten der Schweiz: Swiss-MetNet Stationen <> (28 June 2010).

Copyright information

© Swiss Society of Economics and Statistics 2012

Authors and Affiliations

  • Nicolas Weidmann
    • 1
  • Ramachandran Kannan
    • 1
  • Hal Turton
    • 1
  1. 1.Energy Economics Group, Laboratory for Energy Systems AnalysisPaul Scherrer InstitutVilligen PSISwitzerland

Personalised recommendations