Journal of Optics

, Volume 37, Issue 1, pp 9–15 | Cite as

Study of PDLC and PDCLC Mixtures using Various Techniques

  • Anita Kanwar
  • J. Gupta Sureshchandra
  • Sanjay Patil
  • Gowher B. Vakil


Polymer Dispersed Liquid Crystal (PDLC) and Polymer Dispersed Cholesieric Liquid Crystal (PDCLC)fdms were prepared by thermal-induced phase separation method. PDLC and PDCLC films are analyzed using Fabry Parol Scattering Studies (FPSS), Differential Thermal Analysis (DTA) and Fourier Transform Infra-red (FTIR) Spectroscopy. Changes in the structure, phase transition temperatures (PTTs) and clearing temperatures i.e. the temperature at which the material becomes isotropic are listed. FTIR spectrometer is used to find the structural changes due to the addition of cholesteric material to PDLC. DTA technique is used to corroborate the results obtained using the FPSS technique.

Present studies reveals that the PDCLC samples are a homogeneous mixture at the room temperature. Transmission intensity and hence the homogeneity of the samples is seen to be maximum for the PDCLC sample containing 80% (80% TL205+20% Cholesteryl Pelargonate) + 20%PN393. Approximate range of percentage transmission decreases as the concentration of the cholesteric material increases.


Polymer dispersed cholesteric liquid crystal differential thermal Analysis Fabry Perot Scattering Studies Fourier Transform Infra-red (FTIR) Spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    J.B. Nephew, T.C. Nihei, and S.A. Carter 80, 15, Physical Review Letters, (1998).Google Scholar
  3. 3.
    C. Serbutoviez, J.G. Kloosterboer, H.M.J. Boots, F.A.M.A. Paulissen and F.J. Touwslager, Liquid Crystals, 22(2), 145–156, (1997).CrossRefGoogle Scholar
  4. 4.
    Rohit Bhargava, Shi-Qing Wang, and Jack L Koenig, Macromolecules, 32, 8989–8995, (1999).CrossRefADSGoogle Scholar
  5. 5.
    H.K.D.H. Bhadeshia, University of Cambridge, Materials Science & Metallurgy “Thermal Analysis Techniques”.Google Scholar
  6. 6.
    W.P. Brennan and A.P. Gray, Instrumentation Division. Perkin-Elmer Corp. Norwalk, Conn.06856, Thermal Analysis: Application study of Liquid Crystals by DSC; 13 (1974).Google Scholar
  7. 7.
    Introduction to Fourier Transform Infrared Spectrometry, Thermo Nicolet corporation, USA, (2001).Google Scholar
  8. 8.
    Gupta S.J., “New mesophase transitions in cholesteryl myristale” Liquid Crystals: Chemistry, Physics and Applications; Procs. of SPIE [CLC’99], 4147; 154–159 (1999).CrossRefADSGoogle Scholar
  9. 9.
    Gupta S.J., “Liquid Crystal Phase Transition using Fabry-Perot Etalon” Journal of Optics, India, 29(2), 53–62 (2000).CrossRefGoogle Scholar
  10. 10.
    Gupta S.J., et al, “Phase Transition Temperatures of LCs using Fabry-Perot Etalon” Molecular Crystals; Liquid Crystals, Procs. of ILCC2000, Japan 364–368 (2000).Google Scholar
  11. 11.
    Gupta S.J., Gharde R.A. & Tripathi A.R., Procs. of SPIE, Photonics West, 4970; 89–100 (2003).CrossRefADSGoogle Scholar
  12. 12.
    J.L. West and R. Ondris-Crawford, 3785 J. Appl. Phys. 70(7), 1 October (1991).Google Scholar
  13. 13.
    Interpretation of Infrared Spectra, A Practical Approach, John Coates, Coates Consulting, Newtown, USA.Google Scholar
  14. 14.
    I. Dierking and S.T. Lagerwall, liquid Crystals, 26(1), 83–95, (1999).Google Scholar

Copyright information

© Optical Society of India 2008

Authors and Affiliations

  • Anita Kanwar
    • 1
  • J. Gupta Sureshchandra
    • 2
  • Sanjay Patil
    • 3
  • Gowher B. Vakil
    • 4
  1. 1.Dept. of PhysicsVES College of Arts, Science & Com. Sindhi Society
  2. 2.Department of PhysicsUniversity of MumbaiVidyanagari
  3. 3.Department of ChemistryUniversity of MumbaiVidyanagari
  4. 4.Department of PhysicsUniversity of KashmirSrinagar

Personalised recommendations