Skip to main content
Log in

Potential risks of the natural nanoparticles from the acid mine drainage and a novel approach for their toxicity assessment

  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Acid mine drainage (AMD) is a serious environmental problem due to its acidic pH and high contents of heavy metal ions. Thus, assessment of AMD toxicity has been widely investigated at individual, physiological and molecular levels using various test organisms. However, most studies focused on the toxicity of whole AMD while very few studies identified the toxicity of natural nanoparticles (NPs) originated from AMD. In AMD systems, natural NPs such as amorphous hydroxides, ferrihydrites, schwertmannite and goethite seemed to be formed, which could induce letahl and sublethal toxicity toward aquatic organisms. In this review, we summerized the toxicity of whole AMD and manufactured NPs, and suggested a novel approach for toxicity assessment of natural NPs from AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MKE (Ministry of Knowledge Economy). Mine Pollution Prevention Plan 2007–2011 (2006).

  2. Kim, D. H. The main contents of mine pollution prevention and reclamation law.Geosystem Engineering 43, 91–96 (2005).

    Google Scholar 

  3. Lee, H. J.et al. Assessment of heavy metal contamination and biological toxicity of mine drainages and sediments from abandoned mines.Journal of Korean Society on Water Qaulity 23, 287–293 (2007).

    CAS  Google Scholar 

  4. Kim, J.et al. Influence of acid mine drainage on microbial communities in stream and groundwater samples at Guryong Mine, South Korea.Environ. Geol. 58, 1567–1574 (2009).

    Article  CAS  Google Scholar 

  5. Cherry, D. S.et al. An integrative assessment of a watershed impacted by abandoned mined land discharges.Environ. Pollut. 111, 377–388 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. Denicola, D. M. & Stapleton, M. G. Impact of acid mine drainage on benthic communities in streams: the relative roles of substratum vs. aqueous effects.Environ. Pollut. 119, 303–315 (2002).

    Article  CAS  Google Scholar 

  7. Macedo-Sousa, J. A.et al. Behavioural and feeding responses ofEchinogammarus meridionalis (Crustacea, Aphipoda) to acid mine drainage.Chemosphere 67, 1663–1670 (2007).

    Article  PubMed  CAS  Google Scholar 

  8. Gerhardt, A., Bisthoven, L. J. D. & Soares, A. M. V. Evidence for the stepwise stress model:Gambusia holbrooki andDaphnia magna under acid mine drainage and acidified reference water stress,Environ. Sci. Technol. 39, 4150–4158 (2005).

    Article  PubMed  CAS  Google Scholar 

  9. Pagnanelli, F.et al. Bioassessment of a combined chemical-biological treatment for synthetic acid mine drainage.J. Hazard. Mater. 159, 567–573 (2008).

    Article  PubMed  CAS  Google Scholar 

  10. Neculita, C., Vigneault, B. & Zagury, G. J. Toxicity and metal speciation in acid mine drainage treated by passive bioreactors,Environ. Toxicol. Chem. 27, 1659–1667 (2008).

    Article  PubMed  CAS  Google Scholar 

  11. Seo, J., Kang, S. W., Ji, W. & Jung, J. Toxicity assessment of acid mine drainage treatment plants at abandoned coal mines in Korea.J. Hazard. Mater. submitted.

  12. Heinlaan, M.et al. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteriaVibrio fischeri and crustaceansDaphnia magna andThamnocephalus platyurus.Chemosphere 71, 1308–1316 (2008).

    Article  PubMed  CAS  Google Scholar 

  13. Strigul, N.et al. Acute toxicity of boron, titanium dioxide, and aluminum nanoparticles toDaphnia magna andVibrio fischeri.Deasalination 248, 771–782 (2009).

    Article  CAS  Google Scholar 

  14. Jillian, F. B. & Hengzhong, Z.Nanoparticles and the environment (Reviews in mineralogy and geochemistry, volume 44, 2001).

  15. Waychunas, G. A. Natural nanoparticle structure, properties and reactivity from x-ray studies.Powder Diffr. 24, 89–93 (2009).

    Article  CAS  Google Scholar 

  16. Murad, E. & Rojik, P.Jarosite, schwertmannite, goethite, ferrihydrite and lepidocrocite: the legacy of coal and sulfide ore mining. SuperSoil 2004: 3rd Australian New Zealand Soils Conference, (University of Sydney, Australia, 2003).

    Google Scholar 

  17. Bisthoven, L. J. D., Gerhardt, A., Guhr, K. & Soares, A. M. V. M. Behavioral changes and acute toxicity to the freshwater shrimpAtyaephyra desmaresti millet (decapoda: natantia) from exposure to acid mine drainage.Ecotoxicology 15, 215–227 (2006).

    Article  Google Scholar 

  18. Dsa, J. V.et al. Residual toxicity of acid mine drainage-contaminated sediment to stream macroinvertebrates: relative contribution of acidity vs.Metals. Water Air Soil Pollut. 194, 185–197 (2008).

    Article  CAS  Google Scholar 

  19. Soucek, D. J. Integrative bioassessment of acid mine drainage impacts on the upper Powell River watershed, Southwestern Virginia. in PhD dissertation (Virginia Polytechnic Institute and State University Press, Virginia, 2001).

    Google Scholar 

  20. Macedo-Sousa, J. A.et al. Behavioural responses of indigenous benthic invertebrates (Echinogammarus meridionalis, Hydropsyche pellucidula andChoroterpes picteti) to a pulse of acid mine srainage: a laboratorial study.Environ. Pollut. 156, 966–973 (2008).

    Article  PubMed  CAS  Google Scholar 

  21. Mcwilliam, R. A. & Baird, D. J. Application of postex-posure feeding depression bioassays withDaphnia magna for assessment of toxic effluents in rivers.Environ. Toxicol. Chem. 21, 1462–1468 (2002).

    PubMed  CAS  Google Scholar 

  22. Yi, X., Kang, S. W. & Jung, J. Long-term evaluation of lethal and sublethal toxicity of industrial effluents usingDaphnia magna andMoina macrocopa.J. Hazard. Mater. 178, 982–987 (2010).

    Article  PubMed  CAS  Google Scholar 

  23. Allen, Y., Calow, P. & Baird, D. J. A mechanistic model of contaminant-induced feeding inhibition inDaphnia Magna.Envion. Toxico. Chem. 14, 1625–1630 (1995).

    CAS  Google Scholar 

  24. Márquez-García, B. & Córdoba, F. Antioxidative system and oxidative stress markers in wild populations ofErica australis L. differentially exposed to pyrite mining activities.Environ. Res. 109, 968–974 (2009).

    Article  PubMed  Google Scholar 

  25. Contreras, L., Moenne, A. & Correa, J. A. Antioxidant responses inScytosiphon lomentaria (phaeophyceae) inhabiting copper-enriched coastal environments.J. Phycol. 41, 1184–1195 (2005).

    Article  CAS  Google Scholar 

  26. Nel, A., Xia, T., Madler, L. & Li, N. Toxic potential of materials at the nanolevel.Science 311, 622–627 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. OECD. Manufactured Nanomaterials: Work Programe 2009–2012, 16 (2009).

    Google Scholar 

  28. Colvin, V. L. The potential environmental impact of engineered nanomaterials.Nat. Biotechnol. 21, 1166–1170 (2003).

    Article  PubMed  CAS  Google Scholar 

  29. Lovern, S. B. & Klaper, R.Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles.Environ. Toxicol. Chem. 25, 1132–1137 (2006).

    Article  PubMed  CAS  Google Scholar 

  30. Oberdorster, E., Zhu, S., Blickley, T. M., McClellan-Green, P. & Haasch, M. L. Ecotoxicology of carbonbased engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms.Carbon 44, 1112–1120 (2006).

    Article  Google Scholar 

  31. Zhu, X.et al. Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: buckminsterfullerene aggregates (nC60) and fullerol.Environ. Toxicol. Chem. 26, 976–979 (2007).

    Article  PubMed  CAS  Google Scholar 

  32. Franklin, N. M.et al. Comparative toxicity of nanoparticulate ZnO, bulk ZnO and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility.Environ. Sci. Technol,41, 8484–8490 (2007).

    Article  PubMed  CAS  Google Scholar 

  33. Kittler, S., Greulich, C., Diendorf, J., Koller, M. & Epple, M. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ion.Chem. Mater. 22, 4548–4554 (2010).

    Article  CAS  Google Scholar 

  34. Chen, J.et al. Acute and long-term effects after single loading of functionalized multi-walled carbon nanotubes into zebrafish (Danio rerio).Toxicol. Appl. Pharm. 235, 216–225 (2009).

    Article  Google Scholar 

  35. Smith, C. J., Shaw, B. J. & Handy, R. D. Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects.Aquat. Toxicol. 82, 94–109 (2007).

    Article  PubMed  CAS  Google Scholar 

  36. Yeo, M. K. & Kang, M. S. Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis.Bull. Korean. Chem. Soc. 29, 1179–1183 (2008).

    Article  CAS  Google Scholar 

  37. Navarro, E.et al. Toxicity of silver nanoparticles toChlamydomonas reinhardtii.Environ. Sci. Technol. 42, 8959–8964 (2008).

    Article  PubMed  CAS  Google Scholar 

  38. Kim, J., Park, Y., Yoon, T. H., Yoon, C. S. & Choi, K. Phototoxicity of CdSe/ZnSe quantum dots with surface coatings of 3-mercaptopropionic acid or tri-n-octylphosphine oxide/gum Arabic inDaphnia magna under environmentally relevant UV-B light.Aquat. Toxicol 97, 116–124 (2010).

    Article  PubMed  CAS  Google Scholar 

  39. Lewinski, N. A.et al. Quantification of water solubilized CdSe/ZnS quantum dots inDaphnia magna.Environ. Sci. Technol. 44, 1841–1846 (2010).

    Article  PubMed  CAS  Google Scholar 

  40. Carbone, C.et al. Natural Fe-oxide and -oxyhydroxide nanoparticles: an EPR and SQUID investigation.Mineral. Petrol. 85, 19–32 (2005).

    Article  CAS  Google Scholar 

  41. Soucek, D. J., Cherry, D. S. & Trent, G. C. Relative acute toxicity of acid mine drainage water column and sediments toDaphnia magna in the Puckett’s Creek-Watershed, Virginia, USA.Arch. Environ. Contam. Toxicol. 38, 305–310 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinho Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, J., Kwon, D., Yoon, T.H. et al. Potential risks of the natural nanoparticles from the acid mine drainage and a novel approach for their toxicity assessment. Toxicol. Environ. Health. Sci. 2, 215–220 (2010). https://doi.org/10.1007/BF03217486

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03217486

Keywords

Navigation