Toxicology and Environmental Health Sciences

, Volume 2, Issue 4, pp 215–220 | Cite as

Potential risks of the natural nanoparticles from the acid mine drainage and a novel approach for their toxicity assessment

  • Jaehwan Seo
  • Dongwook Kwon
  • Tae Hyun Yoon
  • Jinho Jung


Acid mine drainage (AMD) is a serious environmental problem due to its acidic pH and high contents of heavy metal ions. Thus, assessment of AMD toxicity has been widely investigated at individual, physiological and molecular levels using various test organisms. However, most studies focused on the toxicity of whole AMD while very few studies identified the toxicity of natural nanoparticles (NPs) originated from AMD. In AMD systems, natural NPs such as amorphous hydroxides, ferrihydrites, schwertmannite and goethite seemed to be formed, which could induce letahl and sublethal toxicity toward aquatic organisms. In this review, we summerized the toxicity of whole AMD and manufactured NPs, and suggested a novel approach for toxicity assessment of natural NPs from AMD.


Acid mine drainage Acute toxicity Chronic toxicity Manufactured nanoparticle Natural nanoparticle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    MKE (Ministry of Knowledge Economy). Mine Pollution Prevention Plan 2007–2011 (2006).Google Scholar
  2. 2.
    Kim, D. H. The main contents of mine pollution prevention and reclamation law.Geosystem Engineering 43, 91–96 (2005).Google Scholar
  3. 3.
    Lee, H. al. Assessment of heavy metal contamination and biological toxicity of mine drainages and sediments from abandoned mines.Journal of Korean Society on Water Qaulity 23, 287–293 (2007).Google Scholar
  4. 4.
    Kim, al. Influence of acid mine drainage on microbial communities in stream and groundwater samples at Guryong Mine, South Korea.Environ. Geol. 58, 1567–1574 (2009).CrossRefGoogle Scholar
  5. 5.
    Cherry, D. al. An integrative assessment of a watershed impacted by abandoned mined land discharges.Environ. Pollut. 111, 377–388 (2001).PubMedCrossRefGoogle Scholar
  6. 6.
    Denicola, D. M. & Stapleton, M. G. Impact of acid mine drainage on benthic communities in streams: the relative roles of substratum vs. aqueous effects.Environ. Pollut. 119, 303–315 (2002).CrossRefGoogle Scholar
  7. 7.
    Macedo-Sousa, J. al. Behavioural and feeding responses ofEchinogammarus meridionalis (Crustacea, Aphipoda) to acid mine drainage.Chemosphere 67, 1663–1670 (2007).PubMedCrossRefGoogle Scholar
  8. 8.
    Gerhardt, A., Bisthoven, L. J. D. & Soares, A. M. V. Evidence for the stepwise stress model:Gambusia holbrooki andDaphnia magna under acid mine drainage and acidified reference water stress,Environ. Sci. Technol. 39, 4150–4158 (2005).PubMedCrossRefGoogle Scholar
  9. 9.
    Pagnanelli, al. Bioassessment of a combined chemical-biological treatment for synthetic acid mine drainage.J. Hazard. Mater. 159, 567–573 (2008).PubMedCrossRefGoogle Scholar
  10. 10.
    Neculita, C., Vigneault, B. & Zagury, G. J. Toxicity and metal speciation in acid mine drainage treated by passive bioreactors,Environ. Toxicol. Chem. 27, 1659–1667 (2008).PubMedCrossRefGoogle Scholar
  11. 11.
    Seo, J., Kang, S. W., Ji, W. & Jung, J. Toxicity assessment of acid mine drainage treatment plants at abandoned coal mines in Korea.J. Hazard. Mater. submitted.Google Scholar
  12. 12.
    Heinlaan, al. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteriaVibrio fischeri and crustaceansDaphnia magna andThamnocephalus platyurus.Chemosphere 71, 1308–1316 (2008).PubMedCrossRefGoogle Scholar
  13. 13.
    Strigul, al. Acute toxicity of boron, titanium dioxide, and aluminum nanoparticles toDaphnia magna andVibrio fischeri.Deasalination 248, 771–782 (2009).CrossRefGoogle Scholar
  14. 14.
    Jillian, F. B. & Hengzhong, Z.Nanoparticles and the environment (Reviews in mineralogy and geochemistry, volume 44, 2001).Google Scholar
  15. 15.
    Waychunas, G. A. Natural nanoparticle structure, properties and reactivity from x-ray studies.Powder Diffr. 24, 89–93 (2009).CrossRefGoogle Scholar
  16. 16.
    Murad, E. & Rojik, P.Jarosite, schwertmannite, goethite, ferrihydrite and lepidocrocite: the legacy of coal and sulfide ore mining. SuperSoil 2004: 3rd Australian New Zealand Soils Conference, (University of Sydney, Australia, 2003).Google Scholar
  17. 17.
    Bisthoven, L. J. D., Gerhardt, A., Guhr, K. & Soares, A. M. V. M. Behavioral changes and acute toxicity to the freshwater shrimpAtyaephyra desmaresti millet (decapoda: natantia) from exposure to acid mine drainage.Ecotoxicology 15, 215–227 (2006).CrossRefGoogle Scholar
  18. 18.
    Dsa, J. al. Residual toxicity of acid mine drainage-contaminated sediment to stream macroinvertebrates: relative contribution of acidity vs.Metals. Water Air Soil Pollut. 194, 185–197 (2008).CrossRefGoogle Scholar
  19. 19.
    Soucek, D. J. Integrative bioassessment of acid mine drainage impacts on the upper Powell River watershed, Southwestern Virginia. in PhD dissertation (Virginia Polytechnic Institute and State University Press, Virginia, 2001).Google Scholar
  20. 20.
    Macedo-Sousa, J. al. Behavioural responses of indigenous benthic invertebrates (Echinogammarus meridionalis, Hydropsyche pellucidula andChoroterpes picteti) to a pulse of acid mine srainage: a laboratorial study.Environ. Pollut. 156, 966–973 (2008).PubMedCrossRefGoogle Scholar
  21. 21.
    Mcwilliam, R. A. & Baird, D. J. Application of postex-posure feeding depression bioassays withDaphnia magna for assessment of toxic effluents in rivers.Environ. Toxicol. Chem. 21, 1462–1468 (2002).PubMedGoogle Scholar
  22. 22.
    Yi, X., Kang, S. W. & Jung, J. Long-term evaluation of lethal and sublethal toxicity of industrial effluents usingDaphnia magna andMoina macrocopa.J. Hazard. Mater. 178, 982–987 (2010).PubMedCrossRefGoogle Scholar
  23. 23.
    Allen, Y., Calow, P. & Baird, D. J. A mechanistic model of contaminant-induced feeding inhibition inDaphnia Magna.Envion. Toxico. Chem. 14, 1625–1630 (1995).Google Scholar
  24. 24.
    Márquez-García, B. & Córdoba, F. Antioxidative system and oxidative stress markers in wild populations ofErica australis L. differentially exposed to pyrite mining activities.Environ. Res. 109, 968–974 (2009).PubMedCrossRefGoogle Scholar
  25. 25.
    Contreras, L., Moenne, A. & Correa, J. A. Antioxidant responses inScytosiphon lomentaria (phaeophyceae) inhabiting copper-enriched coastal environments.J. Phycol. 41, 1184–1195 (2005).CrossRefGoogle Scholar
  26. 26.
    Nel, A., Xia, T., Madler, L. & Li, N. Toxic potential of materials at the nanolevel.Science 311, 622–627 (2006).PubMedCrossRefGoogle Scholar
  27. 27.
    OECD. Manufactured Nanomaterials: Work Programe 2009–2012, 16 (2009).Google Scholar
  28. 28.
    Colvin, V. L. The potential environmental impact of engineered nanomaterials.Nat. Biotechnol. 21, 1166–1170 (2003).PubMedCrossRefGoogle Scholar
  29. 29.
    Lovern, S. B. & Klaper, R.Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles.Environ. Toxicol. Chem. 25, 1132–1137 (2006).PubMedCrossRefGoogle Scholar
  30. 30.
    Oberdorster, E., Zhu, S., Blickley, T. M., McClellan-Green, P. & Haasch, M. L. Ecotoxicology of carbonbased engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms.Carbon 44, 1112–1120 (2006).CrossRefGoogle Scholar
  31. 31.
    Zhu, al. Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: buckminsterfullerene aggregates (nC60) and fullerol.Environ. Toxicol. Chem. 26, 976–979 (2007).PubMedCrossRefGoogle Scholar
  32. 32.
    Franklin, N. al. Comparative toxicity of nanoparticulate ZnO, bulk ZnO and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility.Environ. Sci. Technol,41, 8484–8490 (2007).PubMedCrossRefGoogle Scholar
  33. 33.
    Kittler, S., Greulich, C., Diendorf, J., Koller, M. & Epple, M. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ion.Chem. Mater. 22, 4548–4554 (2010).CrossRefGoogle Scholar
  34. 34.
    Chen, al. Acute and long-term effects after single loading of functionalized multi-walled carbon nanotubes into zebrafish (Danio rerio).Toxicol. Appl. Pharm. 235, 216–225 (2009).CrossRefGoogle Scholar
  35. 35.
    Smith, C. J., Shaw, B. J. & Handy, R. D. Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects.Aquat. Toxicol. 82, 94–109 (2007).PubMedCrossRefGoogle Scholar
  36. 36.
    Yeo, M. K. & Kang, M. S. Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis.Bull. Korean. Chem. Soc. 29, 1179–1183 (2008).CrossRefGoogle Scholar
  37. 37.
    Navarro, al. Toxicity of silver nanoparticles toChlamydomonas reinhardtii.Environ. Sci. Technol. 42, 8959–8964 (2008).PubMedCrossRefGoogle Scholar
  38. 38.
    Kim, J., Park, Y., Yoon, T. H., Yoon, C. S. & Choi, K. Phototoxicity of CdSe/ZnSe quantum dots with surface coatings of 3-mercaptopropionic acid or tri-n-octylphosphine oxide/gum Arabic inDaphnia magna under environmentally relevant UV-B light.Aquat. Toxicol 97, 116–124 (2010).PubMedCrossRefGoogle Scholar
  39. 39.
    Lewinski, N. al. Quantification of water solubilized CdSe/ZnS quantum dots inDaphnia magna.Environ. Sci. Technol. 44, 1841–1846 (2010).PubMedCrossRefGoogle Scholar
  40. 40.
    Carbone, al. Natural Fe-oxide and -oxyhydroxide nanoparticles: an EPR and SQUID investigation.Mineral. Petrol. 85, 19–32 (2005).CrossRefGoogle Scholar
  41. 41.
    Soucek, D. J., Cherry, D. S. & Trent, G. C. Relative acute toxicity of acid mine drainage water column and sediments toDaphnia magna in the Puckett’s Creek-Watershed, Virginia, USA.Arch. Environ. Contam. Toxicol. 38, 305–310 (2000).PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society of Environmental Risk Assessment and Health Science and Springer 2010

Authors and Affiliations

  • Jaehwan Seo
    • 1
  • Dongwook Kwon
    • 2
  • Tae Hyun Yoon
    • 2
  • Jinho Jung
    • 1
  1. 1.Division of Environmental Science & Ecological EngineeringKorea UniversitySeoulKorea
  2. 2.Laboratory of Nanoscale Characterization & Environment Chemistry, Department of ChemistryHanyang UniversitySeoulKorea

Personalised recommendations