Skip to main content
Log in

Identification of novel 17\-estradiol (E2) target genes using cross-experiment gene expression datasets

  • Original Paper
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

17β-estradiol (E2) is an environmental estrogen-like chemicals that is known to affect mainly reproductive functions of exposed targets. Although microarray based toxicogenomics approach allows the investigation of the potential risks of E2 in DNA level, the underling mechanisms related to their toxic effect is not fully understood. In this work, we identified genes responding toE2 by analyzing cross-experiment public gene expression datasets that studied on E2 using RankProd algorithm. We have identified 348 DEGs which play important roles in fatty acid metabolism, infection, and DNA repair. This result was also compared with conventional PubMed data mining analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carlsen, E., Giwercman, A., Keiding, N. & Skakkebaek, N. E. Evidence for decreasing quality of semen during past 50 years.BMJ (Clinical Research Ed.)305, 609–613 (1992).

    Article  PubMed  CAS  Google Scholar 

  2. Sharpe, R. M. Declining sperm counts in men-is there an endocrine cause?The Journal of Endocrinology 136, 357–360 (1993).

    Article  PubMed  CAS  Google Scholar 

  3. Sharpe, R. M. & Skakkebaek, N. E. Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract?Lancet. 341, 1392–1395 (1993).

    Article  PubMed  CAS  Google Scholar 

  4. O’Donnell, L., Robertson, K. M., Jones, M. E. & Simpson, E. R. Estrogen and Spermatogenesis.Endocr. Rev. 22, 289–318 (2001).

    Article  PubMed  Google Scholar 

  5. McMurray, R. W. Sex hormones in the pathogenesis of systemic lupus erythematosus.Frontiers in Bioscience: A Journal and Virtual Library 6, E193–206 (2001).

    Article  CAS  Google Scholar 

  6. Greene, G. L.et al. Sequence and expression of human estrogen receptor complementary DNA.Science 231, 1150–1154 (1986).

    Article  PubMed  CAS  Google Scholar 

  7. Kuiper, G. G., Enmark, E., Pelto-Huikko, M., Nilsson, S. & Gustafsson, J. A. Cloning of a novel receptor expressed in rat prostate and ovary.Proceedings of the National Academy of Sciences of the United States of America 93, 5925–5930 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. Kuiper, G. G. J. M.et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β.Endocrinology 138, 863–870 (1997).

    Article  PubMed  CAS  Google Scholar 

  9. Mosselman, S., Polman, J. & Dijkema, R. ER beta: identification and characterization of a novel human estrogen receptor.FEBS Letters 392, 49–53 (1996).

    Article  PubMed  CAS  Google Scholar 

  10. Marino, M., Pallottini, V. & Trentalance, A. Estrogens cause rapid activation of IP3-PKC-alpha signal transduction pathway in HEPG2 cells.Biochemical and Biophysical Research Communications 245, 254–258 (1998).

    Article  PubMed  CAS  Google Scholar 

  11. Marino, M., Acconcia, F., Bresciani, F., Weisz, A. & Trentalance, A. Distinct nongenomic signal transduction pathways controlled by 17beta-estradiol regulate DNA synthesis and cyclin D1 gene transcription in HepG2 cells.Mol. Biol. Cell. 13, 3720–3729 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. Castoria, G.et al. Non-transcriptional action of oestradiol and progestin triggers DNA synthesis.The EMBO Journal 18, 2500–2510 (1999).

    Article  PubMed  CAS  Google Scholar 

  13. Castoria, G.et al. PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells.The EMBO Journal 20, 6050–6059 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. Lobenhofer, E. K., Huper, G., Iglehart, J. D. & Marks, J. R. Inhibition of mitogen-activated protein kinase and phosphatidylinositol 3-kinase activity in MCF-7 cells prevents estrogen-induced mitogenesis.Cell Growth Differ. 11, 99–110 (2000).

    PubMed  CAS  Google Scholar 

  15. Fernando, R. I. & Wimalasena, J. Estradiol abrogates apoptosis in breast cancer cells through inactivation of BAD: ras-dependent nongenomic pathways requiring signaling through ERK and akt.Mol. Biol. Cell. 15, 3266–3284 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. Barrett, T.et al. NCBI GEO: mining millions of expression profiles-database and tools.Nucl. Acids Res. 33, D562–566 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. Edgar, R., Domrachev, M., & Lash, A. E. Gene expression omnibus: NCBI gene expression and hybridization array data repository.Nucl. Acids Res. 30, 207–210 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. Chatterjee, S. & Price, B.Regression Analysis by Example 2nd Edn (Wiley, 1991).

  19. Tseng, G. C., Oh, M. K., Rohlin, L., Liao, J. C. & Wong, W. H. Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects.Nucleic Acids Research 29, 2549–2557 (2001).

    Article  PubMed  CAS  Google Scholar 

  20. Breitling, R., Armengaud, P., Amtmann, A. & Herzyk, P. Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments.FEBS Letters 573, 83–92 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. Breitling, R. & Herzyk, P. Biological master games: using biologists’ reasoning to guide algorithm development for integrated functional genomics.Omics: A Journal of Integrative Biology 9, 225–232 (2005).

    Article  CAS  Google Scholar 

  22. Hong, F.et al. RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis.Bioinformatics 22, 2825–2827 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. Eyre, T. A.et al. The HUGO gene nomenclature database, 2006 updates.Nucl. Acids Res. 34, D319–321 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. Brown, K. & Jurisica, I. Unequal evolutionary conservation of human protein interactions in interologous networks.Genome Biology 8, R95 (2007).

    Article  PubMed  Google Scholar 

  25. Huang, D. W.et al. The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists.Genome Biology 8, R183 (2007).

    Article  Google Scholar 

  26. Bindea, G.et al. ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks.Bioinformatics 25, 1091–1093 (2009).

    Article  PubMed  CAS  Google Scholar 

  27. Lin, C.et al. Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells.Genome Biology 5, R66 (2004).

    Article  PubMed  Google Scholar 

  28. Stossi, F.et al. Transcriptional profiling of estrogen-regulated gene expression via estrogen receptor (ER)α or ERβ in human osteosarcoma cells: distinct and common target genes for these receptors.Endocrinology 145, 3473–3486 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Cheol Yim.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yim, W.C., Keum, C., Kim, S. et al. Identification of novel 17\-estradiol (E2) target genes using cross-experiment gene expression datasets. Toxicol. Environ. Health. Sci. 2, 25–38 (2010). https://doi.org/10.1007/BF03216511

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03216511

Keywords

Navigation