, Volume 18, Issue 1, pp 133–141 | Cite as

Demography and recruitment of scots pine on raised bogs in eastern Sweden and relationships to microhabitat differentiation

  • Urban Gunnarsson
  • Håkan Rydin


Scots pines (Pinus sylvestris) growing on open bogs occur preferentially on hummocks and on the margin of the bogs. To assess which life history stages lead to this uneven distribution, we studied how variation in the ground-water level influences recruitment and mortality.

In a sowing experiment, the germination was high, 76% on hummocks and 66% in hollows, but it was not significantly different between the microhabitats. Seedling and juvenile pine survival was significantly lower in hollows than on hummocks. The demography of pines in three permanent plots, which represent open bogs, marginal pine forests, and their transition zone, was followed over more than 10 years. Recruitment from seeds was high in 1993 and 1994 compared to earlier surveys and was succeeded by high mortality among the recruits. Events in certain years have profound, long-term effects on the population. High mortality (ca. 60%) of the established pines in the marginal pine forest occurred in 1981. Pines growing close to the ground-water table had a lower survival probability than pines growing at a higher elevation. Differences in seedling survival seem more important than germination success in determining the uneven distribution of pines on the bog.

Key words

distribution patterns germination ground-water level mire mortality permanent plots Pinus sylvestris seedling size distribution survival 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Åberg, E.. 1992. Tree colonisation of three mires in southern Sweden. p. 268–270.In O.M. Bragg, P.D. Hulme, H.A.P. Ingram, and R.A. Robertson (eds.) Peatland Ecosystems and Man: an Impact Assessment. Department of Biological Sciences, University of Dundee, Dundee, Scotland.Google Scholar
  2. Ågren, J., L. Isaksson, and O. Zackrisson. 1983. Natural age and size ofPinus sylvestris andPicea abies on a mire in the inland part of northern Sweden. Holarctic Ecology 6:228–237.Google Scholar
  3. Ågren, J. and O. Zackrisson. 1990. Age and size structure of Pinus sylvestris populations on mires in central and northern Sweden. Journal of Ecology 78:1049–1062.CrossRefGoogle Scholar
  4. Backéus, I.. 1972. Bog vegetation re-mapped after sixty years. Studies on Skagershultamossen, central Sweden. Oikos 23:384–393.CrossRefGoogle Scholar
  5. Backéus, I. 1990. Production and depth distribution of fine roots in a boreal open bog. Annales Botanici Fennici 27:261–265.Google Scholar
  6. Bazzaz, F.A. 1991. Habitat selection in plants. American Naturalist 137(Supplement):S116-S130CrossRefGoogle Scholar
  7. Du Rietz, G.E. 1950. Phytogeographical excursion to the Ryggmossen Mire near Uppsala. Seventh International Botanical Congress, Stockholm, Sweden.Google Scholar
  8. Du Rietz, G.E. 1954. Die Mineralbodenwasserzeigergrenze als Grundlage einer natürlichen Zweigliederung der Nord- und Mitteleuropäischen Moore. Vegetatio 8:571–585.CrossRefGoogle Scholar
  9. Du Rietz, G.E. and J.A. Nannfeldt. 1925. Ryggmossen und Stigsbo Rödmosse, die lezten lebenden Hochmoore der Gegend von Uppsala. Svenska Växtsociologiska Sällskapets Handlingar 3.Google Scholar
  10. Eriksson, J.V.. 1912. Bälinge mossars utvecklingshistoria och vegetation. Svensk Botanisk Tidskrift 6:8–189.Google Scholar
  11. Fenner, M.. 1985. Seed Ecology. Chapman and Hall, London, England.Google Scholar
  12. Granström, A. 1987. Seed viability of fourteen species during five years of storage in a forest soil. Journal of Ecology 75:321–331.CrossRefGoogle Scholar
  13. Groot, A. and M.J. Adams. 1994. Direct seeding black spruce on peatlands: fifth-years result. The Forestry Chronicle 70:585–592.Google Scholar
  14. Hagner, S. 1965. Cone crop fluctuations in Scots pine and Norway spruce. Studia Forestalia Suecica 33:1–21.Google Scholar
  15. Hallingbäck, T. and H. Sjörs. 1990. Excursion guide for the symposium endangered bryophytes in Europe, causes and conservation. Artdatabanken, SLU, Uppsala, Sweden.Google Scholar
  16. Harper, J.L. 1977. Population Biology of Plants. Academic Press, London, England.Google Scholar
  17. Heiskanen, J. 1995. Irrigation regime affects water and aeration conditions in peat growth medium and the growth of containerized Scots pine seedlings. New Forests 9:181–195.CrossRefGoogle Scholar
  18. Hennon, P.E., E.M. Hansen, and C.G. Shaw III. 1990. Dynamics of decline and mortality ofChamaecyparis nootkatensis in southeast Alaska. Canadian Journal of Botany 68:651–662CrossRefGoogle Scholar
  19. Hesselman, H. 1910. Om vattnets syrehalt och dess inverkan på skogsmarkens försumpning och skogens växtlighet. Meddelanden från Statens Skogsforskningsinstitut 7.Google Scholar
  20. Hörnberg, G., M. Ohlson, and O. Zachrisson. 1992. Struktur och dynamik i naturliga sumpskogsekosystem med särskild hänsyn till mikrohabitatets betydelse för granplantors etablering. SLU Rapporter och Uppsatser 2:1–28.Google Scholar
  21. Huikari, O.. 1954. Experiments on the effect of anaerobic media upon birch, pine and spruce seedlings. Communications Institutum Forestale Fenniae 42:1–13.Google Scholar
  22. Huikari, O. and K. Paarlahti. 1967. Results of field experiments on the ecology of pine, spruce and birch. Communications Institutum Forestale Fenniae 64:1–135.Google Scholar
  23. Hulme, P.D. and A.W. Blyth. 1982. The annual growth period of someSphagnum species on the Silver Flowe National Nature Reserv, south-west Scotland. Journal of Bryology 12:287–291.Google Scholar
  24. Ihse, M., N. Malmer, and G. Alm. 1992. Remote sensing and image analysis for study of small changes of vegetation and microtopography, applied on mires in southern Sweden. p. 283–286.In O.M. Bragg, P.D. Hulme, H.A.P. Ingram, and R.A. Robertsson (eds.) Peatland Ecosystems and Man: an Impact Asessment. Department of Biological Sciences, University of Dundee, Dundee, Scotland.Google Scholar
  25. Johnson, E.A., K. Miyanishi and H. Kleb. 1994. The hazards of interpretation of static age structures as shown by stand reconstructions in aPinus contorta-Picea engelmannii forest. Journal of Ecology 82:923–931.CrossRefGoogle Scholar
  26. Jones, R.H. and R.R. Sharitz. 1990. Effects of root competition and flooding on growth of Chinese tallow tree seedlings. Canadian Journal of Forest Research 20:573–578.CrossRefGoogle Scholar
  27. Kimmins, J.P. 1987. Forest Ecology. Macmillan, New York, NY, USA.Google Scholar
  28. Kokkonen, P.. 1923. Beobachtungen über das Wurzelsystem der Kiefer in Moorböden. Acta Forestalia Fennica 25:1–21.Google Scholar
  29. Laiho, R. and L. Finer. 1996. Changes in root biomass after waterlevel drawdown on pine mires in southern Finland. Scandinavian Journal of Forest Research 11:251–260.CrossRefGoogle Scholar
  30. Lawes Agricultural Trust. 1995. Genstat 5.3 manual. Genstat 5 Committee, Rothamstead. Hertfordshire/Clarendon Press, Oxford, England.Google Scholar
  31. Lindholm, T. and I. Markkula. 1984. Moisture conditions in hummocks and hollows in virgin and drained sites on the raised bog Laavisuo, southern Finland. Annales Botanici Fennici 21:241–235.Google Scholar
  32. Lindholm, T. 1990. Growth dynamics of the peat mossSphagnum fuscum on hummocks on a raised bog in southern Finland. Annales Botanici Fennici 27:67–78.Google Scholar
  33. Malmer, N., B.M. Svensson, and B. Wallen. 1994. Interactions betweenSphagnum mosses and field layer vascular plants in the development of peat-forming systems. Folia Geobotanica et Phytotaxonomica 29:483–496.Google Scholar
  34. Melin, E. 1917. De Norrländska Myrmarkernas Vegetation. Almquist & Wiksell, Uppsala, Sweden.Google Scholar
  35. Matsävainio, K.. 1931. Untersuchungen über das Wurzelsystem der Moorpflanzen. Annales Botanici Societatis Zoologicae Botanici Fennici Vanamo, Helsinki, Finland.Google Scholar
  36. Mork, E.. 1938. Gran-och furufröets spirning ved forskjellig temperature og fuktighet. Meddelelser fra det norske skogsforsoeksvesen 21:225–249Google Scholar
  37. Ohlson, M.. 1995. Growth and nutrients characteristics in bogs and fen populations of Scots pine (Pinus sylvestris). Plant and Soil 172: 235–245.CrossRefGoogle Scholar
  38. Ohlson, M. and B. Dahlberg. 1991. Rate of peat increment in hummock and lawn communities on Swedish mires during the last 150 years. Oikos 61:369–378.CrossRefGoogle Scholar
  39. Ohlson, M. and O. Zackrison. 1992. Tree establishment and microhabitat relationships in north Swedish peatlands. Canadian Journal of Forest Research 22:1869–1877.CrossRefGoogle Scholar
  40. Økland, R.H. 1986. Rescaling of ecological gradients. III. The effect of scale on niche breadth measurements. Nordic Journal of Botany 6:671–677.Google Scholar
  41. Rydin, H.. 1985. Effect of water level on desiccation ofSphagnum in relation to surroundingSphagna. Oikos 45:374–379.CrossRefGoogle Scholar
  42. Rydin, H.. 1986. Competition and niche seperation inSphagnum. Canadian Journal of Botany 64:1817–1824.CrossRefGoogle Scholar
  43. Rydin, H.. 1993. Mechanisms of interactions amongSphagnum species along water-level gradients. Advances in Bryology 5:153–185.Google Scholar
  44. SAS Institute Inc. 1989. SAS/STAT User’s Guide. SAS Institute Inc. Cary, NC, USA.Google Scholar
  45. Schneider S.M. 1993. MANOVA: multiple response variables and multispecies interactions. p. 94–112.In S.M. Schnener and J. Gurevitch (eds.) Design and Analysis of Ecological Experiments. Chapman & Hall, London, England.Google Scholar
  46. Schupp E.W.. 1995. Seed-seedling conflicts, habitat choice, and patterns of plant recruitment. American Journal of Botany 82:399–409.CrossRefGoogle Scholar
  47. Sjörs, H. 1948. Myrvegetation i Bergslagen. Acta Phytogeographica Suecica 21:1–299.Google Scholar
  48. St. Hilaire, L.R. and D.J. Leopold. 1995. Conifer seedling distribution in relation to microsite conditions in a central New York forested minerotrophic peatland. Canadian Journal of Forest Research 25:261–269CrossRefGoogle Scholar
  49. Topa, M.A. and J.M. Cheeseman. 1992. Effects of root hypoxia and low P supply on relative growth, carbon dioxide exchange rates and carbon partitioning inPinus serotina seedlings. Physiologia Plantarum 86:136–144.CrossRefGoogle Scholar
  50. Tranquillini, W. 1979. Physiological Ecology of the Alpine Timberline. Springer-Verlag, Berlin, Germany.Google Scholar
  51. Walter, H. 1979. Vegetation of the Earth. Springer-Verlag, Berlin, Germany.Google Scholar
  52. Zobel, M. 1986. Aeration and temperature conditions in hummock and depression peat in Kikepera bog, south-western Estonia. Suo 37:99–106.Google Scholar

Copyright information

© Society of Wetland Scientists 1998

Authors and Affiliations

  • Urban Gunnarsson
    • 1
  • Håkan Rydin
    • 1
  1. 1.Department of Ecological BotanyUppsala UniversityUppsalaSweden

Personalised recommendations