The Mathematical Intelligencer

, Volume 22, Issue 2, pp 43–53 | Cite as

Complete monotonicity and diesel fuel spray

  • Arcadii Z. Grinshpan
  • Mourad E. H. Ismail
  • David L. Milligan


Diesel Mathematical Intelligencer Front Zone Logarithmic Derivative Fuel Spray 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. P. Boas, Jr., Signs of derivatives and analytic behavior,Amer. Math. Monthly 78 (1971) 1085–1093.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    L. de Branges, A proof of the Bieberbach conjecture,Ada Math. 154(1985) 137–152.MATHGoogle Scholar
  3. [3]
    W. Feller,An Introduction to Probability Theory and Its Applications, volume 2, John Wiley & Sons, New York, 1966.MATHGoogle Scholar
  4. [4]
    A. W. Goodman,Univalent Functions, V. 1, Polygonal Publ. House, Washington, NJ, 1983.Google Scholar
  5. [5]
    A. Z. Grinshpan, The use of parameterization for modeling diesel fuel spray,SAE Technical Paper Series 921728 (1992) 1–6.Google Scholar
  6. [6]
    A. Z. Grinshpan, The Bieberbach conjecture and Milin’s functionals,Amer. Math. Monthly 106 (1999) 203–214.CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    A. Z. Grinshpan and S. V. Belyi, The system theory approach to some engineering problems,SAE Technical Paper Series 932460 (1993) 1–7.Google Scholar
  8. [8]
    A. Z. Grinshpan and M. E. H. Ismail, On a parametric diesel function,Math. Rep. Acad. Sci. Canada 18 (1996) 53–58.MATHMathSciNetGoogle Scholar
  9. [9]
    A. Z. Grinshpan and S. A. Romanov, Improvement of diesel engine performance through fuel-injection equipment optimization,SAE Technical Paper Series 911820 (1991) 1–16.Google Scholar
  10. [10]
    A.Z. Grinshpan, S.A. Romanov, and Yu. B. Sviridov, Analytic model of liquid fuel spray penetration in a stationary gas atmosphere,Trudy CNITA 64 (1975) 17–23 (in Russian).Google Scholar
  11. [11]
    A.Z. Grinshpan, S.A. Romanov, and Yu. B. Sviridov, Determination of fuel injection conditions in diesel engines on the basis of some known mixture formation parameters,Trudy CNITA 75 (1980) 3–11 (in Russian).Google Scholar
  12. [12]
    P. Hartman, Difference equations, disconjugacy, principal solutions, Green’s functions, complete monotonicity,Trans. Amer. Math. Soc. 246 (1978) 1–30.MATHMathSciNetGoogle Scholar
  13. [13]
    P. Hartman, Uniqueness of principal values, complete monotonicity of logarithmic derivatives of principal solutions,Math. Ann. 241 (1979)257–281.CrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    H. Hattori and K. Mischaikow, A dynamical system approach to a phase transition problem,J. Differential Equations, 94 (1991) 340–378.CrossRefMATHMathSciNetGoogle Scholar
  15. [15]
    I.I. Hirschman and D. V. Widder,The Convolution Transform, Princeton University Press, Princeton, 1956.Google Scholar
  16. [16]
    M. E. H. Ismail, Complete monotonicity of modified Bessel functions,Proc. Amer. Math. Soc.,108 (1990) 353–361.CrossRefMATHMathSciNetGoogle Scholar
  17. [17]
    M. E. H. Ismail and D. H. Kelker, Special functions, Stieltjes transforms and infinite divisibility,SIAMJ. Math. Anal. 10 (1979) 884–901.CrossRefMATHMathSciNetGoogle Scholar
  18. [18]
    E. Kamke,Differentialgleichungen: Lösungsmethoden und Lösungen, Chelsea, New York, 1974.Google Scholar
  19. [19]
    Y. Katznelson,An Introduction to Harmonic Analysis, 2-nd edition, Dover, New York, 1976.MATHGoogle Scholar
  20. [20]
    K. Löwner (C. Loewner), Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I,Math. Ann. 89 (1923) 103–121.CrossRefMATHGoogle Scholar
  21. [21]
    A. S. Lyshevskii,Fuel Atomization in Marine Diesels, Sudostroenie, St. Petersburg, 1971 (in Russian).Google Scholar
  22. [22]
    I. M. Milin,Univalent Functions and Orthonormal Systems, Amer. Math. Soc., Providence, RI, 1977.MATHGoogle Scholar
  23. [23]
    D. L Milligan,How Mathematics Aids Engineering and Engineering Stimulates Mathematics, Thesis, USF, 1997.Google Scholar
  24. [24]
    J. Pitman and M. Yor, Bessel processes and infinite divisibility laws, in: Stochastic integrals,Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1981) 285–370.CrossRefGoogle Scholar
  25. [25]
    J. Riordan,An Introduction to Combinatorial Analysis, John Wiley & Sons, New York, 1958.MATHGoogle Scholar
  26. [26]
    Yu. B. Sviridov,Mixture Formation and Combustion in Diesel Engines, Mashinostroenie, St. Petersburg, 1972 (in Russian).Google Scholar
  27. [27]
    D. V. Widder,The Laplace Transform, Princeton University Press, Princeton, 1946.Google Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • Arcadii Z. Grinshpan
    • 1
  • Mourad E. H. Ismail
    • 1
  • David L. Milligan
    • 1
  1. 1.Department of MathematicsUniversity of South FloridaTampaUSA

Personalised recommendations