Advertisement

The Mathematical Intelligencer

, Volume 11, Issue 3, pp 15–17 | Cite as

Years ago

  • Allen Shields
Department

Keywords

Primary Ideal Maximal Ideal Tauberian Theorem Normed Ring Maximal Ideal Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
MR

Mathematical Reviews

ZBL

Zentralblatt für Mathematik.

Doklady

Doklady Akad. Nauk SSSR

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. W. Ambrose [1945], Structure theorems for a special class of Banach algebras,Trans. Amer. Math. Soc. 57, 364–386. MR 7, 126.MathSciNetCrossRefzbMATHGoogle Scholar
  2. R. S. Doran and V. A. Belfi [1986],Characterizations of C*-Algebras. The Gel’fand-Naïmark Theorems, Marcel Dekker, New York. MR 87k:46115.Google Scholar
  3. T. W. Gamelin [1969],Uniform algebras, Prentice Hall, Englewood Cliffs, N.J. MR 53 #14137.zbMATHGoogle Scholar
  4. I. M. Gel’fand [1939], On normed rings,Doklady 23, 430–432.Google Scholar
  5. —.[1985] To the theory of normed rings. II. On absolutely convergent trigonometric series and integrals,Doklady 25, 570–572. MR 1, 330.Google Scholar
  6. —.[1985] To the theory of normed rings. III. On the ring of almost periodic functions,Doklady 25, 573–574. MR 1, 331.Google Scholar
  7. —. [1941], Normierte ringe,Mat. Sbornik 9 (51), 3–24. MR 3, 51.zbMATHGoogle Scholar
  8. I. M. Gel’fand and A. N. Kolmogorov [1939], On rings of continuous functions on topological spaces,Doklady 22, 11–15.Google Scholar
  9. I. M. Gel’fand and M. A. Naimark [1943], On the embedding of normed rings into the ring of operators on Hilbert space,Matem. Sbornik 12, 197–213. MR 5, 147.Google Scholar
  10. —. [1948], Normed rings with involution and their representations,Izvest. Akad. Nauk, SSSR, Mat. 12, 445–480; (Russian). MR 10, 199.MathSciNetzbMATHGoogle Scholar
  11. I. M. Gel’fand, D. A. Raikov, and G. E. Šilov [1946], Commutative normed rings,Uspehi Matem. Nauk 1, no. 2 (12), 48–146; (Russian). MR 10, 258.MathSciNetzbMATHGoogle Scholar
  12. —. [1960],Commutative normed rings. Gos. Izdat. Fiz.-Mat. Lit., Moscow; (Russian). MR 23 #A1242.Google Scholar
  13. E. Hille [1944], On the theory of characters of groups and semi-groups in normed vector rings,Proc. Nat. Acad. Sci. USA 30, 58–60. MR 5, 189CrossRefGoogle Scholar
  14. B. E. Johnson [1967], The uniqueness of the (complete) norm topology,Bull. A.M.S. 73, 537–539. MR 35 #2142.CrossRefzbMATHGoogle Scholar
  15. Mat XL [1959],Mathematics in the USSR for 40 years, 1917–1957, vol. II.Google Scholar
  16. M. A. Naimark [1956],Normed rings, Gos. Izdat. Tekh.-Teor. Lit., Moscow; (Russian). MR 19, 870.zbMATHGoogle Scholar
  17. T. Pytlik [1987], Analytic semigroups in Banach algebras and a theorem of Hille,Colloq. Math. 51, 287–294, MR 88h:47061.MathSciNetzbMATHGoogle Scholar
  18. H. Rossi [1960], The local maximum modulus principle,Ann. of Math. 72, 1–11. MR 22 #8317.MathSciNetCrossRefzbMATHGoogle Scholar
  19. G. E. Šilov [19401], Sur la théorie des idéaux dans les anneaux normés de fonctions,Doklady 27, 900–903. MR 2, 224.Google Scholar
  20. —. [19402], On the extension of maximal ideals,Doklady 29, 83–84. MR 2, 314.Google Scholar
  21. —. [1950], On a theorem of Gel’fand and its generalizations,Doklady 72, 641–644. MR 12, 111.Google Scholar
  22. —. [1953], On the decomposition of a commutative normed ring into the direct sum of ideals,Mat. Sbornik 32, 353–364; (Russian). MR 14, 884.MathSciNetGoogle Scholar
  23. —. [1957], On certain problems in the general theory of commutative normed rings,Uspehi Mat. Nauk 12, no. 1, 246–249. MR 18, 912. Letter to the editor, ibid. 12, no. 5, 270. MR 19, 969.MathSciNetGoogle Scholar
  24. M. H. Stone [1948], On a theorem of Pólya,J. Indian Math. Soc, N.S. 12, 1–7. MR 10, 308.MathSciNetzbMATHGoogle Scholar
  25. N. Wiener [1932], Tauberian theorems,Ann. of Math. (2) 33, 1–100. ZBL 4, 59.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1989

Authors and Affiliations

  • Allen Shields
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations