Advertisement

The Mathematical Intelligencer

, Volume 23, Issue 4, pp 33–47 | Cite as

Generalized Flatland

  • Burkard Polster
  • Andreas E. Schroth
  • Hendrik Van Maldeghem
Article

Keywords

Mathematical Intelligencer Generalize Quadrangle Petersen Graph Generalize Polygon Coxeter Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abbot E.A.Flatland—A Romance in Many Dimensions, with illustrations by the author A Square, 2nd Edition originally published in 1884 is available for free download from many literature archives and private websites on the internet.Google Scholar
  2. [2]
    Biggs, N. Three Remarkable Graphs,Can. J. Math. 25 (1973), 391–411.CrossRefMathSciNetGoogle Scholar
  3. [3]
    Bloemen, I. and Van Maldeghem, H. Generalized hexagons as amalgamations of generalized quadrangles.Eur. J. Combin. 14 (1993), 593–604.CrossRefMATHGoogle Scholar
  4. [4]
    Brown, K.S.Buildings. Springer-Verlag, New York-Berlin, 1989.CrossRefMATHGoogle Scholar
  5. [5]
    Cohen, A.M. and Tits, J. On generalized hexagons and a near octagon whose lines have three points.Eur. J. Combin. 6 (1985), 13–27.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    Coxeter, H.S.M. My Graph,Proc. London Math. Soc. 46 (1983), 117–136.CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    Feit, W. and Higman, G. The nonexistence of certain generalized polygons.J. Algebra 1 (1964), 114–131.CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    Pickert, G. Von der Desargues-Konfiguration zum 5-dimensionalen projektiven Raum mit 63 Punkten.Math. Semesterber. 29 (1982), 51–67.MATHMathSciNetGoogle Scholar
  9. [9]
    Polster, B.A Geometrical Picture Book, Universitext Series, Springer-Verlag, N.Y., 1998.CrossRefMATHGoogle Scholar
  10. [10]
    Polster, B. Centering small generalized polygons—projective pottery at work, submitted.Google Scholar
  11. [11]
    Polster, B. and Van Maldeghem, H. Some Constructions of small generalized polygons, to appear inJ. Combin. Theor. Ser. A. Google Scholar
  12. [12]
    Ronan, M.Lectures on Buildings. Perspectives in Mathematics, 7. Academic Press, Boston, 1989.Google Scholar
  13. [13]
    Schroth, A.E. How to Draw a Hexagon,Discrete Math. 199(1999), 61–71.CrossRefMathSciNetGoogle Scholar
  14. [14]
    Thas, J.A. Generalized polygons, in:Handbook of Incidence Geometry, pp. 383–431, North-Holland, Amsterdam, 1995.CrossRefGoogle Scholar
  15. [15]
    Tits, J. Sur la tialité et certains groupes qui s’en déduisent,Inst. Hautes Études Sci. Publ. Math. 2 (1959), 13–60.CrossRefMATHGoogle Scholar
  16. [16]
    Tits, J.Buildings of Spherical Type and Finite BN-Pairs. Lecture Notes in Mathematics 386. Springer-Verlag, Berlin-New York, 1974.Google Scholar
  17. [17]
    Van Maldeghem, H.Generalized Polygons. Birkhäuser, Basel, 1998.CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2001

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMonash UniversityVictoriaAustralia
  2. 2.Institut für AnalysisTU BraunschweigBraunschweigGermany
  3. 3.Department of MathematicsUniversity of GentGentBelgium

Personalised recommendations