The Mathematical Intelligencer

, Volume 7, Issue 2, pp 23–25 | Cite as

The bieberbach conjecture

  • Ch. Pommerenke


Vector Bundle Univalent Function Quadratic Differential Classical Field Theory Riemann Mapping Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Askey and G. Gasper, “Positive Jacobi Sums, II,”Amer. J. Math. 98 (1976), 709–737.CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    A. Baernstein Jr.,Coefficients of univalent functions with restricted maximum modulus, Preprint, 1984.Google Scholar
  3. 3.
    L. deBranges,A proof of the Bieberbach conjecture, Steklov Math. Inst. Leningrad, Preprint E-5-84.Google Scholar
  4. 4.
    L. deBranges,A proof of the Bieberbach conjecture, Acta Math., to appear.Google Scholar
  5. 5.
    P. L. Duren,Univalent functions, Springer-Verlag, New York, Inc., 1983.Google Scholar
  6. 6.
    C. H. FitzGerald and Ch. Pommerenke,The deBranges theorem on univalent functions, Trans. Amer. Math. Soc, to appear.Google Scholar
  7. 7.
    N. G. Makarov,On the distortion of boundary sets under conformai mappings, Preprint, 1984.Google Scholar
  8. 8.
    Ch. Pommerenke,Univalent functions, Vandenhoeck & Ruprecht, Göttingen, 1975.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1985

Authors and Affiliations

  • Ch. Pommerenke
    • 1
  1. 1.Fachbereich MathematikTechnische Universität BerlinBerlin 12

Personalised recommendations