Advertisement

The Mathematical Intelligencer

, Volume 4, Issue 2, pp 88–102 | Cite as

About books

  • Donald G. Saari
  • Alan Weinstein
  • Keith M. Kendig
  • Andreas Blass
  • W. M. Priestley
  • Maynard Thompson
  • John L. Friedman
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Auslander and R. Tolimieri, Is computing with the finite fourier transform pure or applied mathematics, Bull. AMS. 1 (1979), p. 847MATHMathSciNetGoogle Scholar
  2. 2.
    F. F. Bonsall, A down-to-earth view of mathematics, Amer. Math Monthly 89 (1982), pp. 8–14CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    P. R. Halmos, Applied mathematics is bad mathematics, in “Mathematics Tomorrow”, L. A. Steen, ed., Springer, New York, 1981, pp 9–20Google Scholar
  4. 4.
    H. Pollard, “Applied Mathematics: An Introduction”, Addison-Wesley, Reading, Mass., 1972MATHGoogle Scholar

References

  1. 1.
    N. G. de Bruijn: A theory of generalized functions, with applications to Wigner distribution and Weyl correspondence. Nieuw Archief v. Wiskunde21 (1973), 205–280MATHGoogle Scholar
  2. 2.
    J. Chazarain, A. Piriou:Introduction a la theorie des équations aux dérivées partielles linéaires. Gauthier-Villars, Paris, 1981MATHGoogle Scholar
  3. 3.
    A. Córdoba, C. Fefferman: Wave packets and Fourier integral operators. Comm. in PDE3 (1978), 979–1005CrossRefMATHGoogle Scholar
  4. 4.
    J. Dieudonné:Elements ďanalyse. Vol. 7, 8. Gauthier-Villars, Paris, 1978Google Scholar
  5. 5.
    J. J. Duistermaat:Fourier integral operators. New York University, 1973Google Scholar
  6. 6.
    J. J. Duistermaat, L. Hörmander: Fourier integral operators. II. Acta Math.128 (1972), 183–269CrossRefMATHGoogle Scholar
  7. 7.
    J. J. Duistermaat, I. M. Singer: Order-preserving isomorphisms between algebras of pseudo-differential operators. Comm. Pure Appl. Math.29 (1976), 39–47CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Yu. V. Egorov: On canonical transformations of pseudodifferential operators. Uspehi Mat. Nauk.25 (1969) 235–236Google Scholar
  9. 9.
    V. W. Guillemin, S. Sternberg:Geometric asymptotics. Amer. Math. Soc. (1976)Google Scholar
  10. 10.
    J. Marsden, A. Weinstein: Review ofGeometric asymptotics by V. Guillemin and S. Sternberg andSymplectic geometry and Fourier analysis by N. Wallach. Bull. Amer. Math. Soc. (new series)1 (1979), 545–553CrossRefMathSciNetGoogle Scholar
  11. 11.
    V. P. Maslov:Théorie des perturbations et méthodes asymptotiques. Dunod, Gauthier-Villars, Paris, 1972. (Translation of 1965 Russian edition)MATHGoogle Scholar
  12. 12.
    V. P. Maslov:Operational methods. Mir, Moscow, 1976Google Scholar
  13. 13.
    J. Rauch, M. Reed: Propagation of singularities for semilinear hyperbolic equations in one space variable. Ann. Math.111 (1980), 531–552CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    M. Taylor:Pseudodifferential operators. Princeton University Press, Princeton, 1981MATHGoogle Scholar
  15. 15.
    J. Ville: Théorie et applications de la notion de signal analytique. Câbles et Transmission2 (1948), 61–74Google Scholar
  16. 16.
    H. Weyl: Quantenmechanik und Gruppenfheorie. Z. Phys. 46 (1928) 1–46Google Scholar
  17. 17.
    E. Wigner: On the quantum correction for thermodynamic equilibrium. Phys. Rev.40 (1932), 749–759CrossRefGoogle Scholar

References

  1. 1.
    A. S. Esenin-Volpin: Le programme ultra-intuitioniste des fondements des mathématiques. In:Infinitistic Methods (Proc. Symp. on Foundations of Mathematics, Warsaw, 1959) pp. 201–223, Pergamon Press, 1961Google Scholar
  2. 2.
    A. Sochor: The alternative set theory. InSet Theory and Hierarchy Theory (Proc. 2nd Conf., Bierutowice, 1975) pp. 259–271, Lecture Notes in Math., Vol. 537, Springer, Berlin, Heidelberg New York 1976Google Scholar
  3. 3a.
    A. Sochor: Differential calculus in the alternative set theory, inSet Theory and Hierarchy Theory V (proc. 3rd Conf., Bierutowice, 1976) pp. 273–284, Lecture Notes in Math., Vol 619, Springer, Berlin Heidelberg New York 1977Google Scholar
  4. 4.
    P. Vopěnka, and P. Héjek:Theory of Semisets. Academia, Prague 1972MATHGoogle Scholar

References

  1. 1.
    Ansley J. Coale:The Growth and Structure of Human Population. Princeton Univ. Press, Princeton, N.J., 1972Google Scholar
  2. 2.
    Joel E. Cohen: Ergodic Theorems in Demography. Bull. Amer. Math. Soc. (New Series) 1 (1979), 275–295CrossRefMATHGoogle Scholar
  3. 3.
    Narendra S. Goel, Nira Richter-Dyn:Stochastic Models in Biology. Academic Press, New York, 1974Google Scholar
  4. 4.
    M. E. Gurtin, R. C. MacCamy:Population Dynamics with Age Dependence. In:Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. 3, ed. by R. J. Knops, Pitman, London, 1979Google Scholar
  5. 5.
    Nathan Keyfitz:Applied Mathematical Demography. Wiley, New York, 1977Google Scholar
  6. 6.
    Robert M. May:Stability and Complexity in Model Ecosystems. Princeton Univ. Press, Princeton, N.J., 1973Google Scholar
  7. 7.
    Robert M. May (Ed.):Theoretical Ecology: Principles and Applications. Blackwell, Oxford, 1976Google Scholar
  8. 8.
    John H. Pollard:Mathematical Models for the Growth of Human Populations. Cambridge Univ. Press, London, 1973Google Scholar
  9. 9.
    David Smith, Nathan Keyfitz (Eds.):Mathematical Demography: Selected Readings, Biomathematics, Vol 6. Springer, New York, 1977CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1982

Authors and Affiliations

  • Donald G. Saari
    • 1
  • Alan Weinstein
    • 2
  • Keith M. Kendig
    • 3
  • Andreas Blass
    • 4
  • W. M. Priestley
    • 5
  • Maynard Thompson
    • 6
  • John L. Friedman
    • 7
  1. 1.Department of MathematicsNorthwestern UniversityEvanston
  2. 2.Department of MathematicsUniversity of CaliforniaBerkeley
  3. 3.Department of MathematicsCleveland State UniversityCleveland
  4. 4.Department of MathematicsUniversity of MichiganAnn Arbor
  5. 5.Department of MathematicsUniversity of the SouthSewanee
  6. 6.Department of MathematicsIndiana UniversityBloomington
  7. 7.Department of PhysicsUniversity of WisconsinMilwaukee

Personalised recommendations