Skip to main content
Log in

Computational fluid dynamics: Science and tool

  • Article
  • Published:
The Mathematical Intelligencer Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. T. von Karman,Aerodynamics, McGraw-Hill, New York, 1963.

    Google Scholar 

  2. H. Rouse and S. Ince,History of Hydraulics, Dover, New York, 1963.

    Google Scholar 

  3. J. D. Anderson,A History of Aerodynamics, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  4. L. Euler,Principes generaux du mouvement des fluides, Memoires de I’Academie des Sciences de Berlin, 11 (1755), pp. 274–315.

    Google Scholar 

  5. M. D. Salas,Leonhard Euler and his contributions to fluid mechanics, AIAA-paper 88-3564, AIAA, Reston, VA, 1988.

  6. G. G. Stokes,On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids, Transactions of the Cambridge Philosophical Society, 8 (1845), pp. 287.

    Google Scholar 

  7. C. L. M. H. Navier,Mémoire sur les lois du mouvement des fluides, Memoires de I’Académie des Sciences, 6 (1822), pp. 389–440.

    Google Scholar 

  8. C. Reid,Courant in Göttingen and New York. The Story of an Improbable Mathematician, Springer-Verlag, New York, 1976.

    MATH  Google Scholar 

  9. L. F. Richardson,Weather Prediction by Numerical Process, Cambridge University Press, Cambridge, 1922.

    MATH  Google Scholar 

  10. R. Courant, K. O. Friedrichs, and H. Lewy,Über die partiellen Differenzgleichungen der mathematischen Physik, Mathematische Annalen, 100 (1928), pp. 32–74.

    Article  MATH  MathSciNet  Google Scholar 

  11. W. Aspray,John von Neumann and the Origins of Modern Computing, MIT Press, Cambridge, Massachusetts, 1990.

    Google Scholar 

  12. S. Ulam, John von Neumann, 1903–1957,Bulletin of the American Mathematical Society, 64 (1958), pp. 1–49.

    Article  Google Scholar 

  13. J. von Neumann and R. D. Richtmyer, A method for the numerical calculation of shocks,Journal of Applied Physics, 21 (1950), pp. 232–237.

    Article  MATH  Google Scholar 

  14. D. van Dalen, L. E. J. Brouwer, 1881-1966, HerHeldere Licht van de Wiskunde, Bert Bakker, Amsterdam, 2002.

    Google Scholar 

  15. P. Nauer (ed),Revised Report on the Algorithmic Language Algol 60 (available for download from http://www.masswerk.at/algol60/report.htm).

  16. A. van Wijngaarden et al.,Revised Report on the Algorithmic Language Algol 68, Springer-Verlag, Berlin, 1976.

    Book  MATH  Google Scholar 

  17. http://www.abelprisen.no/en/.

  18. P. D. Lax and R. D. Richtmyer, Survey of the stability of linear finite difference equations,Communications on Pure and Applied Mathematics, 9 (1956), pp. 267–293.

    Article  MATH  MathSciNet  Google Scholar 

  19. P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation,Communications on Pure and Applied Mathematics, 7 (1954), pp. 159–193.

    Article  MATH  MathSciNet  Google Scholar 

  20. P. D. Lax and B. Wendroff, Systems of conservation laws,Communications on Pure and Applied Mathematics, 13 (1960), pp. 217–237.

    Article  MATH  MathSciNet  Google Scholar 

  21. P. D. Lax,Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM, Philadelphia, 1973.

    Book  MATH  Google Scholar 

  22. A. Harten, P. D. Lax, and B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws,SIAM Review, 25 (1983), pp. 35–61.

    Article  MATH  MathSciNet  Google Scholar 

  23. S. K. Godunov, Finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics,Mathematicheskii Sbornik, 47 (1959), pp. 271–306. Translated from Russian at the Cornell Aeronautical Laboratory.

    MathSciNet  Google Scholar 

  24. G. F. B. Riemann, Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, in:Gesammelte Werke, Leipzig, 1876. Reprint: Dover, New York, 1953.

    Google Scholar 

  25. G. F. Duivesteijn,Visual shock tube solver (to be downloaded from http://www.piteon.nl/cfd/).

  26. B. van Leer, An Introduction to the article “Reminiscences about difference schemes”, by S. K. Godunov,Journal of Computational Physics, 153 (1999), pp. 1–5.

    Article  MATH  MathSciNet  Google Scholar 

  27. S. K. Gudunov, Reminiscences about difference schemes,Journal of Computational Physics, 153 (1999), pp. 6–25.

    Article  MathSciNet  Google Scholar 

  28. B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method,Journal of Computational Physics, 32 (1979), pp. 101–136. Reprint:Journal of Computational Physics, 135 (1997), pp. 229-248.

    Article  Google Scholar 

  29. B. van Leer, Flux-vector splitting for the Euler equations, inLecture Notes in Physics, Vol. 170, Springer-Verlag, Berlin, 1982, pp.507–512.

    Google Scholar 

  30. P. L. Roe, Approximate Riemann solvers, parameter vectors, and differences schemes,Journal of Computational Physics, 43 (1981), pp. 357–372.

    Article  MATH  MathSciNet  Google Scholar 

  31. S. Osher and F. Solomon, Upwind difference schemes for hyperbolic systems of conservation laws,Mathematics of Computation, 38 (1982), pp. 339–374.

    Article  MATH  MathSciNet  Google Scholar 

  32. A. Brandt, Multi-level adaptive solutions to boundary-value problems,Mathematics of Computation, 31 (1977), pp. 333–390.

    Article  MATH  MathSciNet  Google Scholar 

  33. U. Trottenberg, C. W. Oosterlee, and A. Schuller,Multigrid, Academic Press, New York, 2001.

    MATH  Google Scholar 

  34. A. F. Emery, An evaluation of several differencing methods for inviscid fluid flow problems,Journal of Computational Physics, 2 (1968), pp. 306–331.

    Article  MATH  MathSciNet  Google Scholar 

  35. P. R. Woodward and P. Colella, The numerical simulation of twodimensional fluid flow with strong shocks,Journal of Computational Physics, 54 (1984), pp. 115–173.

    Article  MATH  MathSciNet  Google Scholar 

  36. J. Wackers and B. Koren, A simple and efficient space-time adaptive grid technique for unsteady compressible flows, inProceedings 16th AIAA CFD Conference (CD-ROM), AlAA-paper 2003-3825, American Institute of Aeronautics and Astronautics, Reston, VA, 2003.

    Google Scholar 

  37. P. Wesseling,Principles of Computational Fluid Dynamics, Springer-Verlag, Berlin, 2001.

    Book  Google Scholar 

  38. P. J. Roache,Fundamentals of Computational Fluid Dynamics, Hermosa, Albuquerque, NM, 1998.

    Google Scholar 

  39. Ch. Hirsch,Numerical Computation of Internal and External Flows, Vol. 1 Fundamentals of Numerical Discretization, Vol. 2 Computa tional Methods for Inviscid and Viscous Flows, Wiley, Chichester, 1988-1990.

    Google Scholar 

  40. C. A. J. Fletcher,Computational Techniques for Fluid Dynamics, Vol. 1 Fundamental and General Techniques, Vol. 2 Specific Techniques for Different Flow Categories, Springer-Verlag, Berlin, 1988.

    MATH  Google Scholar 

  41. http://www.cfd-online.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry Koren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koren, B. Computational fluid dynamics: Science and tool. The Mathematical Intelligencer 28, 5–16 (2006). https://doi.org/10.1007/BF02986996

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02986996

Keywords

Navigation