Advertisement

The Mathematical Intelligencer

, Volume 25, Issue 1, pp 10–16 | Cite as

On Fine’s Partition Theorems, Dyson, Andrews, And Missed Opportunities

  • Igor Pak
Article

Keywords

Young Diagram Mathematical Intelligencer Distinct Part Combinatorial Proof Basic Hypergeometric Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A1]
    G. E. Andrews,On basic hypergeometric series, mock theta functions, and partitions (II), Quart. J. Math.17 (1966), 132–143.CrossRefMATHGoogle Scholar
  2. [A2]
    G. E. Andrews,Two theorems of Gauss and allied identities proved arithmetically, Pacific J. Math.41 (1972), 563–578.CrossRefMATHMathSciNetGoogle Scholar
  3. [A3]
    G. E. Andrews,The Theory of Partitions, Addison-Wesley, Reading, MA, 1976.MATHGoogle Scholar
  4. [A4]
    G. E. Andrews,Ramanujan’s “Lost” Notebook. I.Partial θ-Functions, Adv. Math.41 (1981), 137–172.CrossRefMATHGoogle Scholar
  5. [A5]
    G. E. Andrews,On a partition theorem of N. J. Fine, J. Nat. Acad. Math. India1 (1983), 105–107.MATHMathSciNetGoogle Scholar
  6. [A6]
    G. E. Andrews,Use and extension of Frobenius’ representation of partitions, in“Enumeration and design”, Academic Press, Toronto, ON, 1984, 51–65.Google Scholar
  7. [A7]
    G. E. Andrews,Foreword to [F2], 1988.Google Scholar
  8. [A8]
    G. E. Andrews,Some debts I owe, Sém. Lothar. Combin.42 (1999), Art. B42a.Google Scholar
  9. [At]
    A. O. L. Atkin, personal communication, 2002.Google Scholar
  10. [AS]
    A. O. L. Atkin, H. P. F. Swinnerton-Dyer,Some Properties of Partitions, Proc. London Math. Soc. (3) 4 (1954), 84–106.CrossRefMathSciNetGoogle Scholar
  11. [BG]
    A. Berkovich, F. G. Garvan,Some Observations on Dyson’s New Symmetries of Partitions, preprint (2002), available from http://www.math.ufl.edu/~frank.Google Scholar
  12. [B]
    C. Bessenrodt,A bijection for Lebesgue’s partition identity in the spirit of Sylvester, Discrete Math.132 (1994), 1–10.CrossRefMATHMathSciNetGoogle Scholar
  13. [BZ]
    D. M. Bressoud, D. Zeilberger,Bijecting Euler’s Partitions-Recurrence, Amer. Math. Monthly92 (1985), 54–55.CrossRefMATHMathSciNetGoogle Scholar
  14. [C]
    R. Chapman,Franklin’s argument proves an identity of Zagier, El. J. Comb.7 (2000), RP 54.Google Scholar
  15. [D1]
    F. J. Dyson,Some Guesses in The Theory of Partitions, Eureka (Cambridge)8 (1944), 10–15.MathSciNetGoogle Scholar
  16. [D2]
    F. J. Dyson,Problems for Solution: 4261, Amer. Math. Monthly54 (1947), 418.MathSciNetGoogle Scholar
  17. [D3]
    F. J. Dyson,A new symmetry of partitions, J. Combin. Theory7 (1969), 56–61.CrossRefMATHMathSciNetGoogle Scholar
  18. [D4]
    F. J. Dyson,Missed opportunities, Bull. Amer. Math. Soc.78 (1972), 635–652.CrossRefMATHMathSciNetGoogle Scholar
  19. [D5]
    F. J. Dyson,A walk through Ramanujan’s garden, inRamanujan revisited, Academic Press, Boston, 1988, 7–28.Google Scholar
  20. [D6]
    F. J. Dyson,Mappings and Symmetries of Partitions, J. Combin. Theory Ser. A51 (1989), 169–180.CrossRefMATHMathSciNetGoogle Scholar
  21. [E]
    L. Euler,Introductio in analysin infinitorum.Tomus primus, Marcum-Michaelem Bousquet, Lausannae, 1748.Google Scholar
  22. [F1]
    N. J. Fine,Some new results on partitions, Proc. Nat. Acad. Sci. USA34 (1948), 616–618.CrossRefMATHGoogle Scholar
  23. [F2]
    N. J. Fine,Basic hypergeometric series and applications, AMS, Providence, Rl, 1988.Google Scholar
  24. [Fr]
    F. Franklin,Sure le développement du produit infini (1-x) (1-x 2)(1-x 3)..., C. R. Acad. Paris Ser. A92 (1881), 448–450.MATHGoogle Scholar
  25. [GM]
    A. M. Garsia, S. C. Milne,A Rogers-Ramanujan bijection, J. Combin. Theory Ser. A31 (1981), 289–339.CrossRefMATHMathSciNetGoogle Scholar
  26. [KY]
    D. Kim, A. J. Yee,A note on partitions into distinct parts and odd parts, Ramanujan J.3 (1999), 227–231.CrossRefMATHMathSciNetGoogle Scholar
  27. [KP]
    D. E. Knuth, M. S. Paterson,Identities from partition involutions, Fibonacci Quart.16 (1978), 198–212.MATHMathSciNetGoogle Scholar
  28. [L]
    D. H. Lehmer,Math. Reviews 10,356d, andErrata 10,856 (on paper [F1]).Google Scholar
  29. [PP]
    I. Pak, A. Postnikov,A generalization of Sylvester’s identity, Discrete Math.178 (1998), 277–281.CrossRefMATHMathSciNetGoogle Scholar
  30. [S1]
    J. J. Sylvester, with insertions by F. Franklin,A constructive theory of partitions, arranged in three acts, an interact and an exodion, Amer. J. Math.5 (1882), 251–330.CrossRefMathSciNetGoogle Scholar
  31. [S2]
    J. J. Sylvester,On a new Theorem in Partitions, Johns Hopkins University Circular 2:22 (April 1883), 42–43.Google Scholar
  32. [W]
    G. N. Watson,The final problem: An account of the mock thetafunctions, J. London Math. Soc.11 (1936), 55–80.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2003

Authors and Affiliations

  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridge

Personalised recommendations