Economic Botany

, Volume 5, Issue 4, pp 348–366 | Cite as

Production and utilization of sugar beets

  • H. S. Owens
  • C. L. Rasmussen
  • W. D. Maclay
Semi-Popular Articles
  • 76 Downloads

Abstract

Processing of sugar beets has become a major chemical industry in the United States. About one-quarter of the country’s sugar requirement is obtained from about 12 million tons of beets grown on 700 thousand acres of land. This industry has succeeded through the combined efforts of scientists in many fields, who have improved resistance to diseases, sugar content of beets, methods of farming and processing procedures. Feed pulp, molasses, glutamic acid, potassium salts and betaine are by-products of the industry.

Keywords

Sugar Sugar Cane Sugar Beet Economic Botany Invert Sugar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Achard, F. C. Anleitung zum Anbau der zur Zuckerfabrikation anwendbaren Runkelrüben und zur vortheilhaften Gewinnung des zuckers aus denselben. p. 14–67. Ostwald’s Klassiker der Exakten Wissenschaften. No. 159. 1907.Google Scholar
  2. 2.
    Anonymous (Fox, C. D.). The Hildebrandt diffuser: its successful operation in Germany. Sugar45(4): 34–36. 1950.Google Scholar
  3. 3.
    Berge, J. Apparatus for diffusion such as beet-slice extraction. U. S. Patent 2,- 012,298. August 27, 1935.Google Scholar
  4. 4.
    Berry, E. F. and Gaddie, R. S. Observations on ion-exchange purification of lowgrade syrups in conventional beet sugar refining methods. Proc. Am. Soc. Sugar Beet Tech.: 674–680. 1948.Google Scholar
  5. 5.
    Brieghel-Müller, A. and Brueniche-Olsen, H. The physical chemistry of the second carbonation in the beet sugar industry. Sugar44(4): 36–39. 1949;42 (10): 34. 1947.Google Scholar
  6. 6.
    Brandos. E. W. and Coons, G. H. Climatic relations of sugar cane and sugar beet. U. S. Dept. Agr., Yearbook: 421–438. 1941.Google Scholar
  7. 7.
    Cannon, R. Observations on the dehydration of beets after receiving and during storage in northern Montana. Proc. Am. Sugar Beet Tech.: 642. 1950.Google Scholar
  8. 8.
    Carsner. E. Curly-top resistance in sugar beets and tests of the resistant variety, U. S. No. 1. U. S. Dept. Agr., Tech. Bull.360. 1933.Google Scholar
  9. 9.
    Coons, G. H. Improvement of the sugar beet. U. S. Dept. Agr., Yearbook: 625–656. 1936.Google Scholar
  10. 10.
    -.loc. cit., p. 647.Google Scholar
  11. 11.
    Cotton, R. H.et al. Recovery of waste ammonia in ion exchange operation. Proc. Am. Sugar Beet Tech.: 544. 1950.Google Scholar
  12. 12.
    Cottrell, R. H. Recent developments in the processing of beet sugar.Ibid., 48–58. 1948.Google Scholar
  13. 13.
    Dahlberg, H. W. American beet sugar in 1775. Sugar45(6): 25. 1950.Google Scholar
  14. 14.
    - and Brewbaker, H. E. A promising sugar beet hybrid of the Milpitas wild type x Commercial. Proc. Am. Sugar Beet Tech.: 175–178. 1948.Google Scholar
  15. 15.
    — The barium process of desugarizing beet molasses. Trans. Am. Inst. Chem. Eng.16(1): 35–44. 1924.Google Scholar
  16. 16.
    Daniels, R. M. and Cotton, R. H. Reburning of defecation lime cake. Ind. Eng. Chem.43: 624. 1951.CrossRefGoogle Scholar
  17. 17.
    Dedek, J. The chemistry of lime salts in sugar beet juices. Proc. Am. Soc. Sugar Bret Tech.: 595–610. 1948.Google Scholar
  18. 18.
    Deerr, N. The history of sugar. 2 vols. 1950.Google Scholar
  19. 19.
    Dickinson, B. N. Present status of ion exchange in beet sugar manufacture. Sugar45(4): 28. 1950.Google Scholar
  20. 20.
    Dörfeldt, W. Recent developments in continuous diffusion. Korrespondenzbriefe für Zuckerfabriken1949 (3): 1–4; (6): 1–3. Sugar Ind. Abst. 12: 45. 1950.Google Scholar
  21. 21.
    Ellison, H. E. Simplified sugar end operation on deionized juices. Proc. Am. Soc. Sugar Beet Tech: 554. 1950.Google Scholar
  22. 22.
    Fort, C. A. and Stout, M. Suggested procedure for obtaining lower temperatures during sugar beet storage.Ibid., 515–523. 1946.Google Scholar
  23. 23.
    — Whitewashing sugar beets to reduce sugar losses during storage. Sugar40(9): 34–40. 1945.Google Scholar
  24. 24.
    Lippmann, E. O. von. Geschichte der Rübe. 184 pp. 1925.Google Scholar
  25. 25.
    Lippmann, E. O. von. Verzeichnis von Mitteln zur Reinigung, Entfärbung und Klärung zuckerhaltiger Säfte und Erzeugnisse. Deut. Zuckerind62: 67–69, 87–89. 105–106, 125–126, 151–152. 1936.Google Scholar
  26. 26.
    McGuire, P. J. The Oliver-Morton Continuous Diffuser. Sugar44(3): 31–32.Google Scholar
  27. 27.
    Manning, P. D. V.et al. Manufacture of monosodium glutamate. Chem. Eng. Prog.44: 491–496. 1948.Google Scholar
  28. 28.
    Marggraff, A. S. Chymische Versuche, einen wahren Zucker aus verschiedenen Pflanzen die in unseren Ländern wachsen, zu ziehen. p. 1–13. Ostwald’s Klassiker der Exakten Wissenschaften No. 159. 1907.Google Scholar
  29. 29.
    Overpeck, J. C. Seed production from sugar beets overwintered in the field. U. S. Dept. Agr., Circ.20. 1928.Google Scholar
  30. 30.
    Rawlings, F. W.et al. Ion exchange in the beet sugar industry. 7th Congr. Int. Ind. Agr., Paris Vol. 1. Q4-A: 1–11. 1948. Chem. Abst. 43: 6440. 1949.Google Scholar
  31. 31.
    Rounds, H. Second carbonation studies based on commercial application of “Effective Alkalinity” concept. Proc. Am. Soc. Sugar Beet Tech.:561. 1950.Google Scholar
  32. 32.
    Savitsky, V. F. Monogerm sugar beets in United States.Ibid. 156. 1950.Google Scholar
  33. 33.
    Shafor, R. W. The hot saccharate process of the beet sugar industry. Trans. Am. Inst. Chem. Eng.16(1): 19–32. 1924.Google Scholar
  34. 34.
    Silver, H. F. Latest developments in the continuous diffusion of sugar beets. Pub. by Am. Soc. Sugar Beet Tech. 1950.Google Scholar
  35. 35.
    Skaar, K. S. and McGinnis, R. A. Purification of sugar beet juice. Ind. Eng. Chem.36: 574–580. 1944.CrossRefGoogle Scholar
  36. 36.
    Smet, A. The new Tirlemont refinery continuous diffusion process. Results of the 1949 campaign. Sucre Belge69: 241–252. 1949. Sugar Ind. Abst. 12: 84. 1950.Google Scholar
  37. 37.
    Tödt, F. Utilization of sugar in molasses, with special reference to the removal of salts by ion-exchangers. Branntweinwirtschaft2: 49–50. 1948. Sugar Ind. Abst. 12: 48. 1950.Google Scholar
  38. 38.
    Van Hook, A. J. Sugar, its production, technology, and uses. 155 pp. 1949.Google Scholar
  39. 39.
    Weitz, F. W. Juice purification by ion exchange as applied at the Isabella Sugar Company. Sugar38(1): 26–31. 1943.Google Scholar
  40. 40.
    Wilcox, E. V. Modern farmers’ cyclopedia of agriculture. 1944.Google Scholar
  41. 41.
    Wintzell, T. and Åkermark, B. Aspects of diffusion. Socker Handl.6(1): 7–47. 1950.Google Scholar
  42. 42.
    Zitkowski, H. E. Technical accounting in the sugar industry. Trans. Am. Inst. Chem. Eng.16(1): 55–67. 1924.Google Scholar

Copyright information

© The New York Botanical Garden 1951

Authors and Affiliations

  • H. S. Owens
    • 1
    • 2
  • C. L. Rasmussen
    • 1
    • 2
  • W. D. Maclay
    • 1
    • 2
  1. 1.Western Regional Research LaboratoryAlbany
  2. 2.Bureau of Agricultural and Industrial Chemistry, Agricultural Research AdministrationU. S. Department of AgricultureUSA

Personalised recommendations