Economic Botany

, Volume 8, Issue 1, pp 29–47 | Cite as

Pectin—a product of citrus waste

  • R. M. McCready
  • H. S. Owens
Technical Literature Reviews


The annual processing of citrus fruit wastes in the United States has reached two million tons. Forty thousand tons of pectin could be produced, compared with current production of three thousand tons. The physical and chemical properties of pectic substances are important botanically and industrially. Pectic substances aid in maintaining texture of fruits and vegetables and serve as jellying agents in preserves. The availability of increasing amounts of citrus wastes, combined with improvements in manufacturing techniques and new uses, promises expansion of industries concerned with pectin production and utilization.


Pectin Economic Botany Naringin Galacturonic Acid Pectic Substance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Allen, C. E. On the origin and nature of the middle lamella. Bot. Gaz.32: 1–34. 1901.CrossRefGoogle Scholar
  2. 2.
    American Chemical Society, Committee on Nomenclature of Pectin of the Agriculture-Food Division, Definitions. Jour. Am. Chem. Soc. (Proc.)49: 37–39. 1927.Google Scholar
  3. 3.
    —. Committee for the Revision of the Nomenclature of Pectic Substances. Chem. Eng. News22: 105–106. 1944.Google Scholar
  4. 4.
    Baier, W. E., and Wilson, C. W. Citrus pectates—properties, manufacture, and uses. Ind. Eng. Chem.33: 287–291. 1941.CrossRefGoogle Scholar
  5. 5.
    Bailey, I. W. Cell wall structure of higher plants. Ind. Eng. Chem.30: 40–47. 1938.CrossRefGoogle Scholar
  6. 6.
    Bonner, J. Plant biochemistry, pages 99–108. 1950.Google Scholar
  7. 7.
    Braconnot, H. Recherches sur un nouvel acide universellement répandu dans tous les végétaux. Ann. Chim. Phys. II28: 173–178. 1825.Google Scholar
  8. 8.
    Branfoot, M. H. A critical and historical study of the pectic substances of plants. Gt. Brit. Dept. Sci. & Ind. Res., Spec. Rep. 33. 154 pp. 1929.Google Scholar
  9. 9.
    Braverman, J. B. S. Citrus products, pages 7–15. 1949.Google Scholar
  10. 10.
    California Fruit Growers Exchange, Products Dept., Ontario, Calif. Exchange Preservers Handbook. 113 pp. 1941.Google Scholar
  11. 11.
    Carson, J. F. Some polygalacturonide n-alkylamides. Jour. Am. Chem. Soc.68: 2723–2724. 1946.CrossRefGoogle Scholar
  12. 12.
    — and Maclay, W. D. The acylation of polyuronides with formamide as a dispersing agent. Jour. Am. Chem. Soc.68: 1015–1017. 1946.CrossRefGoogle Scholar
  13. 13.
    Deuel, H. Oxydativer Abbau von Pektin in wasseriger Lösung. Viskosimetrische Bestimmungen. Helv. Chim. Acta26: 2002–2025. 1943.CrossRefGoogle Scholar
  14. 14.
    —. Über Glykolester der Pektinsäure. Helv. Chim. Acta30: 1523–1934. 1947.CrossRefPubMedGoogle Scholar
  15. 15.
    —. Über die Einwirkung von Formaldahyd auf Pektinstoffe. Helv. Chim. Acta30: 1269–1285. 1947.CrossRefPubMedGoogle Scholar
  16. 16.
    Ehrlich, F. Die Pektinstoffe, ihre Konstitution und Bedeutung. Chem. Ztg.41: 197–200. 1917.Google Scholar
  17. 17.
    — and Sommerfeld, R. v. Die Zusammensetzung der Pektinstoffe der Zuckerrübe. Biochem. Zeits.168: 263–323. 1926.Google Scholar
  18. 18.
    Fellenberg, T. von. Über den Ursprung des Methylalkohols in Trinkbraunt-weinen. Mitt. Lebensm. Hyg.5: 172–178. 1914.Google Scholar
  19. 19.
    Frey-Wyssling, A. Elektronenmikroskopie. 46 pp. 1951.Google Scholar
  20. 20.
    Henglein, F. A., Krässig, H., and Steinmig, A. Der Phosphorsäuregehalt von Pektinen. Makromol. Chem.4: 78–90. 1949.CrossRefGoogle Scholar
  21. 21.
    — and Schneider, G. Über die Veresterung von Pektinstoffen. Ber.69: 309–324. 1936.Google Scholar
  22. 22.
    — and Vollmert, B. Über den Essigsäuregehalt des Pektins der Zuckerrübe. Macromol. Chem.2: 77–87. 1948.CrossRefGoogle Scholar
  23. 23.
    Hinton, C. L. The polyuronides. Ann. Rev. Biochem.20: 67–86. 1951.PubMedCrossRefGoogle Scholar
  24. 24.
    Hirst, E. L. Recent progress in the chemistry of the pectic materials and plant gums. Jour. Chem. Soc. 70–78. 1942.Google Scholar
  25. 25.
    — and Jones, J. K. N. The chemistry of pectic materials. Adv. Carbohydrate Chem.2: 235–251. 1946.Google Scholar
  26. 26.
    Holden, M. Studies on pectase. Biochem. Jour.40: 103–108. 1946.Google Scholar
  27. 27.
    Isbell, H. S. Determination of carbonyl groups by reaction with radioactive cyanide, and a simple means for estimation of molecular weight in polysaccharides. Science113: 532–533. 1952.CrossRefGoogle Scholar
  28. 28.
    Jansen, E. F., and MacDonnell, L. R. Influence of methoxyl content of pectic substances on the action of polygalacturonase. Arch. Biochem.8: 97–112. 1945.Google Scholar
  29. 29.
    —, —, and Ward, W. H. The minimum size for the structural unit of pectin. Arch. Biochem.21: 149–157. 1949.PubMedGoogle Scholar
  30. 30.
    Jermyn, M. A., and Tomkins, R. G. The chromatographic examination of the products of the action of peotinase on pectin. Biochem. Jour.47: 437–442. 1950.Google Scholar
  31. 31.
    Joslyn, M. A., and Phaff, H. J. Recent advances in the chemistry of the pectic substances. Wallerstein Labs. Communs.10: 39–56. 1947.Google Scholar
  32. 32.
    Katacholsky, A., Weizmann Institute of Science, Rehovoth, Israel. [Private communication]. 1952.Google Scholar
  33. 33.
    Kertesz, Z. I. A possible non-enzymatic mechanism of changes occurring in the pectic substances and other polysaccharides in living plants. Plant Physiol.18: 308–309. 1943.PubMedCrossRefGoogle Scholar
  34. 34.
    -. The pectic substances. 628 pp. 1951.Google Scholar
  35. 35.
    -. Pectic enzymes.In Sumner, J. B., and Myrbäck, K. The Enzymes. Vol. 1, Pt. 2, 745–768. 1951.Google Scholar
  36. 36.
    — and McColloch, R. J. Enzymes acting on pectic substances. Advances in Carbohydrate Chemistry. Vol.5: 79–102. 1949.Google Scholar
  37. 37.
    Levene, P. A., and Kreider, L. C. On the structure of pectin polygalacturonic acid. Science85: 610. 1937.PubMedCrossRefGoogle Scholar
  38. 38.
    Lineweaver, H., and Ballou, G. A. Properties of alfalfa pectinesterase (pectase). Fed. Proc.2: 66. 1943.Google Scholar
  39. 39.
    —, and —. The effect of cations on the activity of alfalfa pectinesterase (pectase). Arch. Biochem.6: 373–387. 1945.Google Scholar
  40. 40.
    —, Jang, Rosie, and Jansen, E. F. Specificity and purification of polygalacturonase. Arch. Biochem.20: 137–152. 1949.PubMedGoogle Scholar
  41. 41.
    — and Jansen, E. F. Pectic enzymes. Advances in Enzymology11: 267–295. 1951.CrossRefGoogle Scholar
  42. 42.
    Loconti, J. D., and Kertesz, Z. I. Identification of calcium pectate as the tissue-firming compound formed by treatment of tomatoes with calcium chloride. Food Res.6: 499–508. 1941.Google Scholar
  43. 43.
    Loesecke, H. W. von. Citrus cannery waste, its use and disposition. U. S. Dept. Agr., Bur. Agr. & Ind. Chem. AIC-290. 21 pp. 1950.Google Scholar
  44. 44.
    Lotzkar, H., and Maclay, W. D. Pectin as an emulsifying agent. Ind. Eng. Chem.35: 1294–1297. 1943.CrossRefGoogle Scholar
  45. 45.
    Luckett, S., and Smith, F. The constitution of pectic acid. III. Hydrolysis of the methyl ester of methylated pectic acid and the isolation of the methyl ester of 2,3-dimethyl-β-methylgalactopyruronoside. Jour. Chem. Soc. 1506–1511. 1940.Google Scholar
  46. 46.
    Luh, B. S. Hydrolysis of pectic substances by purified yeast polygalacturonase. Diss., Univ. Cal. 1952.Google Scholar
  47. 47.
    MacDonnell, L. R., Jang, Rosie, Jansen, E. F., and Lineweaver, H. The specificity of pectinesterase from several sources with some notes on purification of orange pectinesterase. Arch. Biochem.28: 260–273. 1950.PubMedGoogle Scholar
  48. 48.
    —, Jansen, E. F., and Lineweaver, H. The properties of orange pectinesterase. Arch. Biochem.6: 389–401. 1945.Google Scholar
  49. 49.
    Maclay, W. D., and Owens, H. S. Pectinates—promising food and industrial material. Chemurgic Digest6(22): 325, 327/2-329. 1947.Google Scholar
  50. 50.
    —, and —. Pectinate films. Modern Packaging22(1): 157–158. 1948.Google Scholar
  51. 51.
    —, Shepherd, A. D., and Lotzkar, H. Use of pectin in pharmaceutical pastes and ointments. Jour. Am. Pharm. Assoc.33: 113–116. 1944.Google Scholar
  52. 52.
    Mangin, L. Sur la constitution de la membrane végétaux. Compt. Rend. Acad. Sci. [Paris]107: 144–146. 1888.Google Scholar
  53. 53.
    Martin, C. M., and Reuter, F. H. Isolation of pectic substance from passion fruit(Passiflora edulis). Nature164: 407. 1949.PubMedCrossRefGoogle Scholar
  54. 54.
    McColloch, R. J., and Kertesz, Z. I. Pectic enzymes. VI. The use of an ion exchange resin for the complete removal of pectin-methylesterase from commercial pectinase. Jour. Biol. Chem.160: 149–154. 1945.Google Scholar
  55. 55.
    —, and —. Pectic enzymes. VIII. A comparison of fungal pectin-methylesterase with that of higher plants, especially tomatoes. Arch. Biochem.13: 217–229. 1947.PubMedGoogle Scholar
  56. 56.
    —, and —. Recent developments of practical significance in the field of pectic enzymes. Food Tech.3: 94–96. 1949.Google Scholar
  57. 57.
    McCready, R. M., Jeung, Nylan, and Maclay, W. D. Nonuronide constituents of pectic acid. Abstract of Papers, 114th meeting Am. Chem. Soc, Portland, Oregon. P. 5 Q. 1948.Google Scholar
  58. 58.
    —, Owens, H. S., and Maclay, W. D. The use of fibrous sodium pectate as a substitute for agar in bacteriological gels. Science97: 428. 1943.PubMedCrossRefGoogle Scholar
  59. 59.
    —, —, and —. Alkali-hydrolyzed pectins are potential industrial products. Food Ind.16: 794–796, 864–865, 906–908. 1944.Google Scholar
  60. 60.
    —, —, Shepherd, A. D., and Maclay, W. D. Acidic isolation of lowester pectinic acids. Ind. Eng. Chem.38: 1254–1256. 1946.CrossRefGoogle Scholar
  61. 61.
    Morell, S., Baur, L., and Link, K. P. The methyl glycosides of the naturally occurring hexuronic acids. III. Polygalacturonic acid-methyl glycosides derived from pectin. Jour. Biol. Chem.105: 1–13. 1934.Google Scholar
  62. 62.
    Mottern, H. H., and Hills, C. H. Low ester pectin from apple pomace. Ind. Eng. Chem.38: 1153–1156. 1946.CrossRefGoogle Scholar
  63. 63.
    Muhlethaler, A. K. Electron microscopy of developing plant cell walls. Biochim. Biophys. Acta5: 1–9. 1950.PubMedCrossRefGoogle Scholar
  64. 64.
    Myers, P. B., and Baker, G. L. Fruit jellies.VIII. The role of pectin 4. The physico-chemical properties of pectin. Univ. Del. Agr. Exp. Sta., Bull. 187. 39 pp. 1934.Google Scholar
  65. 65.
    Nanji, D. R., Paton, F. J., and Ling, A. R. Decarboxylation of polysaccharide acids; its application to the establishment of the constitution of pectins and to their determination. Jour. Soc. Chem. Ind.44: 253–258 T. 1925.CrossRefGoogle Scholar
  66. 66.
    Owens, H. S., McCready, R. M., and Maclay, W. D. Enzymatic preparation and extraction of pectinic acids. Ind. Eng. Chem.36: 936–938. 1944.CrossRefGoogle Scholar
  67. 67.
    —, —, and —. Gelation characteristics of acid-precipitated pectinates. Food Tech.3(3): 77–82. 1949.Google Scholar
  68. 68.
    —, Miers, J. C, and Maclay, W. D. Distribution of molecular weights of pectin propionates. Jour. Colloid Sci.3: 277–291. 1941.CrossRefGoogle Scholar
  69. 69.
    -, Veldhuis, M. K., and Maclay, W. D. Making use of tons of citrus waste. U. S. Dept. Agr., Yearbook: 268–274. 1951.Google Scholar
  70. 70.
    Palmer, K. J., and Hartzog, Merle B. An X-ray diffraction investigation of sodium pectate. Jour. Am. Chem. Soc.67: 2122–2127. 1945.CrossRefGoogle Scholar
  71. 71.
    Pallmann, H., and Deuel, H. Übersicht über die Chemie und Physik der Pektinstoffe und Besprechung der neueren Literatur 1937-1946. Chimia1: 27–33, 51–56. 1947.PubMedGoogle Scholar
  72. 72.
    Phaff, H. J., and Joslyn, M. A. The newer knowledge of pectic enzymes. Wallerstein Labs. Communs.10: 133–148. 1947.Google Scholar
  73. 73.
    — and Luh, B. S. Studies of polygalacturonase of certain yeasts. Arch. Biochem.33: 212–227. 1951.PubMedCrossRefGoogle Scholar
  74. 74.
    — and —. The preparation of pure diand trigalacturonic acids. Arch. Biochem.36: 231–232. 1952.PubMedCrossRefGoogle Scholar
  75. 75.
    Pippen, E. L., McCready, R. M., and Owens, H. S. Gelation properties of partially acetylated pectins. Jour. Am. Chem. Soc.72: 813–816. 1950.CrossRefGoogle Scholar
  76. 76.
    - and Owens, H. S. Acidic properties of pectin. 1952. [Unpubl.].Google Scholar
  77. 77.
    -Pippen, E. L., Schultz, T. H., and Owens, H. S. Effect of degree of esterification on viscosity and gelation behavior of pectin. Jour. Colloid Sci.8: 97–104. 1953.CrossRefGoogle Scholar
  78. 78.
    Poore, H. D. Recovery of naringin and pectin from grapefruit residue. Ind. Eng. Chem.26: 637–639. 1934.CrossRefGoogle Scholar
  79. 79.
    Rangachari, D. N. Structure of pectin. Proc. Indian Acad. Sci.33A: 100–106. 1951.Google Scholar
  80. 80.
    Rauch, G. H. Jam manufacture. 204 pp. 1950.Google Scholar
  81. 81.
    Reid, W. W. The enzymatic degradation of pectin and other polysaccharides. 1. Introduction, and a preliminary study, on the degradation of the polysaccharides of fruits by the enzymes produced by micro-fungi (moulds). Jour. Sci. Food & Agr.1: 234–240. 1950.CrossRefGoogle Scholar
  82. 82.
    Reid, W. W. The pectic enzymes of the fungusByssochlamys fulva. Biochem. Jour.50: 289–292. 1952.Google Scholar
  83. 83.
    Robertson, W. V. B., Ropes, M. W., and Bauer, W. The degradation of mucins and polysaccharides by ascorbic acid and hydrogen peroxide. Biochem. Jour.35: 903–908. 1941.Google Scholar
  84. 84.
    Roboz, E., Barratt, R. W., and Tatum, E. L. Breakdown of pectic substances by a new enzyme from Neurospora. Jour. Biol. Chem.195: 459–471. 1952.Google Scholar
  85. 85.
    Suarez, M. L. Ein Isomeres der Glucuronsäure. Chem. Ztg.41: 87. 1917.Google Scholar
  86. 86.
    Schultz, T. H., Owens, H. S., and Maclay, W. D. Pectinate films. Jour. Colloid Sci.3: 53–62. 1948.CrossRefGoogle Scholar
  87. 87.
    Seegmiller, C. G., and Jansen, E. F. Polymethylgalacturonase, an enzyme causing the glycosidic hydrolysis of esterified pectic substances. Jour. Biol. Chem.195: 327–336. 1952.Google Scholar
  88. 88.
    Shepherd, A. D., and Graham, R. P. Preparation and evaluation of dried citrus peel as a pectin source material. Food Tech.6: 411–413. 1952.Google Scholar
  89. 89.
    —, McCready, R. M., and Owens, H. S. New, quick cold-water dessert mix. Food Eng.23(7): 44–45, 180. 1951.Google Scholar
  90. 90.
    Smolenski, K. Pectins. Rocznigi Chemki 3: 86–152. 1923. [From Chem. Abstr.19: 41. 1925].Google Scholar
  91. 91.
    Speiser, R., Copley, M. J., and Nutting, G. C. Effect of molecular association and charge distribution on the gelation of pectin. Jour. Phys. Colloid Chem.51: 117–133. 1947.CrossRefGoogle Scholar
  92. 92.
    —, Eddy, C. R., and Hills, C. H. Kinetics of deësterification of pectin. Jour. Phys. Chem.49: 563–579. 1945.CrossRefGoogle Scholar
  93. 93.
    Stuewer, R. F., and Olsen, A. G. Pectin Studies. V. Organic base derivatives of pectinic and pectic acids. Jour. Am. Pharm. Assoc.29: 303–306. 1940.CrossRefGoogle Scholar
  94. 94.
    Tetley, U. A study of the antomical development of the apple and some observations on the “pectic constituents” of the cell walls. Jour. Pom. Hort. Sci.8: 153–172. 1930.Google Scholar
  95. 95.
    Tripp, V. W., Moore, A. T., and Rollins, M. L. Some observations on the constitution of the primary wall of the cotton fiber. Textile Res. Jour.21: 886–894. 1951.CrossRefGoogle Scholar
  96. 96.
    Vauquelin, M. Analyse du tamarin. Ann. Chim.5: 92–106. 1790.Google Scholar
  97. 97.
    Vollmert, B. Über die Vollmethylierung von Pektin und Pektinsäure mit Diazomethan und die Verwendung vollveresterter Pektinpräparate zur Uronsäurebestimmung und zur Molekularge-wichtsbestimmung. Macromol. Chemie5: 101–109. 1950.CrossRefGoogle Scholar
  98. 98.
    —. Über den Alkalischen Pektinabbau. Macromol. Chemie5: 110–127. 1950.CrossRefGoogle Scholar
  99. 99.
    Webber, H. J., and Batchelor, L. D. The citrus industry. Vol. I. 1943.Google Scholar
  100. 100.
    Wilson, C. P. The manufacture of pectin. Ind. Eng. Chem.17: 1065–1067. 1925.CrossRefGoogle Scholar
  101. 101.
    Wood, R. K. S. Pectic enzymes produced by Bacterium aroideae. Nature 167: 771. 1951.PubMedCrossRefGoogle Scholar
  102. 102.
    —, Gold, A. H., and Rawlins, T. E. Electron microscopy of primary cell walls treated with pectic enzymes. Am. Jour. Bot.39: 132–133. 1952.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 1954

Authors and Affiliations

  • R. M. McCready
    • 1
  • H. S. Owens
    • 1
  1. 1.Western Regional Research LaboratoryAlbany

Personalised recommendations