Economic Botany

, 45:345 | Cite as

Observations on the origin of phaseolus polyanthus Greenman

  • V. Schmit
  • D. G. Debouck


Total seed protein variability in a sample of 163 entries of year-bean (Phaseolus polyanthus), including wild, feral and cultivated forms of the whole range of distribution in Latin America was studied using I-dimensional SDS/PAGE and 2-dimensional IEF-SDS/PAGE. Ten different patterns were observed in this crop. Eight of these are found in the Mesoamerican materials, the other two of those in the northern Andes. The highest diversity is found in the wild ancestral forms present in central Guatemala with six patterns. The ‘b’pattern predominant in all Mesoamerican cultivated materials is also present at low frequency in Colombia. The ‘k’ pattern, predominant in the northern Andes, is present in Costa Rica. These results together with information on indigenous names for the crop suggest that there is a single gene pool domesticated from a wild ancestor still present in Guatemala, and distributed afterwards to the northern Andes, but with a clinal genetic drift from Mesoamerica to the Andean region.

Key Words

Bean Linguistic evidence Phaseolus domestication Phaseolus polyanthus Phaseolus taxonomy Seed protein 

Observaciones sobre el origen del Phaseolus polyanthus Greenman


La variabilidad de la proteína total en una muestra de 163 materiales de frijoles de Phaseolus polyanthus que incluye formas silvestres, escapadas y cultivadas de toda su distributión en América latina ha sido estudiada usando la técnica de electroforesis en una dimensión y en dos dimensiones después delpunto isoeléctrico. Se encontraron diez patrones diferentes en este cultivo, ocho en Mesoamérica y otros dos en los Andes del Norte. La mayor diversidad (seis patrones) se encontró en las formas silvestres ancestrales presentes en el centro de Guatemala. El patrón ‘b’ dominante en todos los materiales cultivados mesoamericanos es también presente con baja frecuencia en Colombia. Al reveés, el patrón ‘k’ dominante en los Andes del Norte ya loesen CostaRica. Estos resultados junto con la informatión linguistica traditional sugieren que se trata de un solo acervo genético. También indican que se domesticó este cultivo a partir de una forma silvestre ancestral aún presente en Guatemala. Sugieren enfin una distribution posterior hacia los Andes del Norte donde una deriva genética empieza de manifestarse con relatión a Mesoamérica.

Literature Cited

  1. Alvarez, M. N., P. D. Ascher, and D. W. Davis. 1981. Interspecific hybridization inEuphaseolus through embryo rescue. Hort. Sci. 16:541–543.Google Scholar
  2. Anderson, L. 1988. Two-dimensional electrophoresis: Operation of the ISO-DALT system. Large Scale Biology Press, Washington, DC.Google Scholar
  3. Anonymous. 1972. Atlas Nacional de Guatemala. Publicatión Instituto Geográfico Nacional, Ministerio de Comunicaciones y Obras Públicas, Guatemala, Guatemala.Google Scholar
  4. -. 1983. Mapa de Zonas de Vida. Instituto Nacional Forestal de Guatemala, Escala 1:600.000, Instituto Geográfico Militar, Guatemala, Guatemala.Google Scholar
  5. Baudet, J. C. 1977. Origine et classification des espèces cultivées du genrePhaseolus. Bull. Soc. Roy. Bot. Belg. 110:65–76.Google Scholar
  6. Baudoin, J.-P. 1988. Genetic resources, domestication and evolution of lima bean,Phaseolus lunatus. Pages 393–407in P. Gepts, ed., Genetic resources ofPhaseolus beans. Kluwer Academic Publishers, Dordrecht, Holland.Google Scholar
  7. Beard, J. S. 1944. Climax vegetation in tropical America. Ecology 25:127–158.CrossRefGoogle Scholar
  8. Berglund-Briicher, O., and H. Brücher. 1974. Murutungo, eine semi-domestizierte Wildbohne (Phaseolus flavescens Piper) ausden tropischen Gebirgen Südamerikas. Angew. Bot. 48:209–220.Google Scholar
  9. —,and — 1976. The South American wild bean (Phaseolus aborigineus Burk.) as ancestor of the common bean. Econ. Bot. 30:257–272.Google Scholar
  10. Bliss, F. A., and J. W. S. Brown. 1983. Breeding common bean for improved quantity and quality of seed protein. Pages 59–102in J. Janick, ed., Plant breeding reviews, vol. 1. AVI, Westport, CT.Google Scholar
  11. Blum, H., H. Beir, and H. J. Gross. 1987. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99.CrossRefGoogle Scholar
  12. Breedlove, D. E. 1973. The phytogeography and vegetation of Chiapas (Mexico). Pages 149–165in A. Graham, ed., Vegetation and vegetational history of northern Latin America. Elevier, Amsterdam, Holland.Google Scholar
  13. Brown, J. W. S., Y. Ma, F. A. Bliss, and T. C. Hall. 1981a. Genetic variation in the subunits of globulin- 1 storage protein of French bean. Theor. Appl. Genet. 59:83–88.Google Scholar
  14. —,T. C. Osborn, F. A. Bliss, and T. C. Hall. 1981b. Genetic variation in the subunits of globulin-2 and albumin seed proteins of French bean. Theor. Appl. Genet. 60:245–250.CrossRefGoogle Scholar
  15. Brücher, H. 1954. Argentinien, Urheimat unserer Bohnen. Umschau in Wiss. u Technik 54:14–15.Google Scholar
  16. — 1988. The wild ancestor ofPhaseolus vulgaris in South America. Pages 185–214in P. Gepts, ed., Genetic resourcesof Phaseolus beans. Kluwer Academic Publishers, Doredrecht, Holland.Google Scholar
  17. Carter, G. F. 1946. Origins of American Indian agriculture. Amer. Anthrop. 48:1–21.CrossRefGoogle Scholar
  18. Clegg, M. T., and R. W. Allard. 1972. Patterns of genetic differentiation in the slender wild oat speciesAvena barbata. Proc. Natl. Acad. Sci., USA 69: 1820–1824.PubMedCrossRefGoogle Scholar
  19. Debouck, D. G. 1986.Phaseolus germplasm collection in western Guatemala, C.A. Mimeographed, International Board for Plant Genetic Resources, Rome, Italy.Google Scholar
  20. — 1987. Recolección de germoplasma dePhaseolus en el Centro y Centro-sur del Perú. Mimeographed, International Board for Plant Genetic Resources, Rome, Italy.Google Scholar
  21. — 1988.Phaseolus germplasm collection in central and eastern Guatemala. Mimeographed, International Union for Conservation of Nature and Natural Resources, Gland, Switzerland.Google Scholar
  22. R. Araya V., R. Ocampo S., and W. G. Gonzalez U. 1989a. CollectingPhaseolus germplasm in Costa Rica. FAO/IBPGR Plant Genet. Resour. Newsl. 78-79:44–46.Google Scholar
  23. R. Castillo T., and J. Tohme. 1989b. Observations on little knownPhaseolus germplasm of Ecuador. FAO/IBPGR Plant Genet. Resour. Newsl. 80:15–21.Google Scholar
  24. —,M. Gamarra F., V. Ortiz A., and J. Tohme. 1989c. Presence of a wild-weed-crop complex inPhaseolus vulgaris L. in Peru? Ann. Rep. Bean Improv. Coop. 32:64–65.Google Scholar
  25. —,J. H. Liñan J., A. Campana S., and J. H. De la Cruz R. 1987. Observations on the domestication ofPhaseolus lunatus L. FAO/IBPGR Plant Genet. Resour. Newsl. 70:26–32.Google Scholar
  26. —,A. Maquet, and C. E. Posso. 1989d. Biochemical evidence for two different gene pools in lima beans,Phaseolus lunatus L. Ann. Rep. Bean Improv. Coop. 32:58–59.Google Scholar
  27. —,and V. Schmit. 1989. Recolección de germoplasma dePhaseolus en el departamento de Risaralda, Colombia. Mimeographed, Centro International de Agriculture Tropical, Cali, Colombia.Google Scholar
  28. —,and J. J. Soto D. 1988. Recolecciôn de Germoplasma dePhaseolus (frijol) en el Occidente de Guatemala. Tikalia 6:17–34.Google Scholar
  29. —,and J. Tohme. 1989. Implications for bean breeders of studies on the origins of common bean,Phaseolus vulgaris L. Pages 3–42in S. Beebe, ed., Current topics in breeding of common bean. Working Document No. 47, Bean Program, CIAT, Cali, Colombia.Google Scholar
  30. De Candolle, A. 1883. Origine des plantes cultivées. Librairie Germer Baillière et Cie, Paris.Google Scholar
  31. Delgado Salinas, A. 1985. Systematics of the genusPhaseolus (Leguminosae), in North and Central America. Ph.D. Thesis, Univ. of Texas, Austin.Google Scholar
  32. — 1988. Variation, taxonomy, domestication, and germplasm potentialities inPhaseolus coccineus. Pages 441–463in P. Gepts, ed., Genetic resourcesof Phaseolus beans. Kluwer Academic Publishers, Dordrecht, Holland.Google Scholar
  33. —,A. Bonet, and P. Gepts. 1988. The wild relative ofPhaseolus vulgaris in Middle America. Pages 163–184in P. Gepts, ed., Genetic resources ofPhaseolus beans. Kluwer Academic Publishers, Dordrecht, Holland.Google Scholar
  34. Diels, L. 1937. Bibliot. Bot. 29(116):98.Google Scholar
  35. Durante, M., R. Bernardi, M. C. Lupi, and S. Pini 1989.Phaseolus coccineus storage proteins. 2. Electrophoretic analysis and erythroagglutinating activity. Plant Breeding 102:58–65.CrossRefGoogle Scholar
  36. Evans, A. M. 1980. Structure, variation, evolution, and classification inPhaseolus. Pages 337–347in R. J. Summerfield and A. H. Bunting, eds., Advances in legume science. Royal Botanic Gardens, Kew, England.Google Scholar
  37. Fermond, Ch. 1855. Recherches sur les fécondations réciproques de quelques végétaux. Bull. Soc. Bot. Fr. 2:748–754.Google Scholar
  38. Freeman, G. F. 1913. The tepary, a new cultivated legume from the Southwest. Bot. Gaz. 56:395–417.CrossRefGoogle Scholar
  39. Gepts, P. L., and D. G. Debouck. 1991. Origin, domestication, and evolution of the common bean (Phaseolus vulgaris L.). Pages 7–53in A. v. Schoonhoven and O. V. Voysest, eds., Common beans: research for crop improvement. Centro International de Agriculture Tropical, Cali, Colombia.Google Scholar
  40. —,T. C. Osborn, K. Rashka, and F. A. Bliss. 1986. Phaseolin protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris L.): evidence for multiple centers of domestication. Econ. Bot. 40:451–468.Google Scholar
  41. Gray, A. 1850. Plantae Wrightianae Texano-NeoMexicanae. Part 1. Smithsonian Contributions to Knowledge 3:1–146.Google Scholar
  42. Greenman, J. M. 1907. New or noteworthy spermatophytes from Mexico, Central America and the West Indies. Field Columb. Mus. Publ. 126,2:247–287.Google Scholar
  43. Hernández X., E. 1970. Apuntes sobre la exploratión etnobotánica y su metodología. Colegio de Postgraduados, Escuela National de Agriculture, SAG, Chapingo, Mexico.Google Scholar
  44. —,S. Miranda C, and C. Prwyer. 1959. El origen dePhaseolus coccineus L.darwinianus Hernandez X. & Miranda C. subspecies nova. Rev. Soc. Mex. Hist. Nat. 20:99–121.Google Scholar
  45. Hucl, P., and G. J. Scoles. 1985. Interspecific hybridization in the common bean: a review. Hort. Sci. 20:352–357.Google Scholar
  46. Hussain, A., W. Bushuk, H. Ramirez, and W. M. Roca. 1988. A practical guide for electrophoretic analysis of isoenzymes and proteins in cassava, field beans and forage legumes. Working Document No. 40, Centro International de Agriculture Tropical, CIAT, Cali, Colombia.Google Scholar
  47. Ibrahim, A. M., and D. P. Coyne. 1975. Genetics of stigma shape, cotyledon position, and flower color in reciprocal crosses betweenPhaseolus vulgaris L. andPhaseolus coccineus (Lam.) and implications in breeding. J. Amer. Soc. Hort. Sci. 100:622–626.Google Scholar
  48. Kaplan, L. 1981. What is the origin of the common bean? Econ. Bot. 35:240–254.Google Scholar
  49. —,and L. N. Kaplan. 1988.Phaseolus in archaeology. Pages 125–142in P. Gepts, ed., Genetic resources ofPhaseolus beans. Kluwer Academic Publishers, Dordrecht, Holland.Google Scholar
  50. Koenig, R.L., S.P. Singh, and P. Gepts. 1990. Novel phaseolin types in wild and cultivated common bean (Phaseolus vulgaris, Fabaceae). Econ. Bot. 44:50–60.Google Scholar
  51. Koenig, R.L., and P. Gepts. 1989. Allozyme diversity in wildPhaseolus vulgaris: further evidence for two major centers of genetic diversity. Theor. Appl. Genet. 78:809–817.CrossRefGoogle Scholar
  52. Lackey, J. A. 1981. Phaseoleae. Pages 301–327in R. H. Polhill and P. H. Raven, eds., Advances in legume systematics. Royal Botanic Gardens, Kew, England.Google Scholar
  53. Ladizinsky, G. 1985. Founder effect in crop-plant evolution. Econ. Bot. 39:191–199.Google Scholar
  54. León, J. 1987. Botánica de los cultivos tropicales. Editorial Instituto Interamericano de Coopóratión para la Agriculture, IICA, San José, Costa Rica.Google Scholar
  55. Lynch, T. F., R. Gillepsie, J. A. J. Gowlett, and R. E. M. Hedges. 1985. Chronology of Guitarrero Cave, Peru. Science 229:864–867.PubMedCrossRefGoogle Scholar
  56. MacBryde, F. W. 1945. Cultural and historical geography of Southwest Guatemala. Smithson. Inst. Publ. 4:1–184.Google Scholar
  57. MacFadyen, J. 1837. Flora of Jamaica. Fl. Jam. 1: 279.Google Scholar
  58. MacNeish, R. S. 1964. Ancient Mesoamerican civilization. Science 143:531–537.PubMedCrossRefGoogle Scholar
  59. Manshardt, R. M., and M. J. Bassett. 1984. Inheritance of stigma position inPhaseolus vulgaris xPhaseolus coccineus hybrid populations. J. Hered. 75:45–50.Google Scholar
  60. Maquet, A., A. Gutierrez S., and D. G. Debouck 1990. Further biochemical evidence for the existence of two gene pools in lima beans. Ann. Rep. Bean Improv. Coop. 33:128–129.Google Scholar
  61. Maréchal, R., J. M. Mascherpa, and F. Stainier 1978. Etude taxonomique d’un groupe complexe d’espèces des genresPhaseolus etVigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l’analyse informatique. Boissiere 28:1–273.Google Scholar
  62. Miranda Colin, S., and A. M. Evans. 1973. Exploring the genetic isolating mechanisms betweenPhaseolus vulgaris L. andP. coccineus Lam.. Ann. Rep. Bean Improv. Coop. 16:39–41.Google Scholar
  63. Nabhan, G. P., J. W. Berry, and C. W. Weber 1980. Wild beans of the greater Southwest—Phaseolusmetcalfei andP. ritensis. Econ. Bot. 34:68–85.Google Scholar
  64. —,and R. S. Feiger. 1978. Teparies in southwestern North America. Econ. Bot. 32:2–19.Google Scholar
  65. Nevo, E., A. Beiles, N. Storch, H. Doll, and B. Andersen. 1983. Microgeographic edaphic differentiation in hordein polymorphisms of wild barley. Theor. Appl. Genet. 64:123–132.CrossRefGoogle Scholar
  66. —,D. Zohary, A. H. D. Brown, and M. Haber. 1979. Genetic diversity and environmental associations of wild barley,Hordeum spontaneum, in Israel. Evolution 33:815–833.CrossRefGoogle Scholar
  67. Osborn, T. C. 1988. Genetic control of bean seed protein. CRC Crit. Rev. Plant Sci. 7:93–116.CrossRefGoogle Scholar
  68. Pearsall, D. M. 1978. Paleoethnobotany in western South America: progress and problems. Pages 389–416in R. I. Ford, ed., The nature and status of ethnobotany. Anthropological Papers, No. 67, Museum of Anthropology, Univ. of Michigan.Google Scholar
  69. Piñero, D., and L. Eguiarte. 1988. The origin and biosystematic status ofPhaseolus coccineus ssp. polyanthus: electrophoretic evidence. Euphytica 37: 199–203.Google Scholar
  70. Piper, C.V. 1926. Studies in American Phaseolinae. Contr. US Nat. Herb. 22:663–701.Google Scholar
  71. Sanders, W. T. 1985. Adaptatión agrícola en los altiplanos húmedos de Mesoamérica. Pages 197–214in T. Rojas Rabiela and W. T. Sanders, eds., Historia de la agriculture, época prehispánica—siglo XVI, vol. 2. Instituto Nacional de Antropología e Historia, Mexico, Mexico.Google Scholar
  72. Schinkel, C, and P. Gepts. 1988. Phaseolin diversity in the tepary bean,Phaseolus acutifolius A. Gray. Pl. Breed. 101:292–301.CrossRefGoogle Scholar
  73. Schmit, V. 1988. Catálogo de Germplasma dePhaseolus coccineus L. &Phaseolus polyanthus Greenm/2. Working Document No. 42, Centro International de Agriculture Tropical, CIAT, Cali, Colombia.Google Scholar
  74. —,and J.-P. Baudoin. 1987. Multiplication et évaluation dePhaseolus coccineus L. etPhaseolus polyanthus Greenman, deux espèces intéressantes pour l’amélioration de la productivité des légumineuses vivrières. Bull. Rech. Agron. Gembloux 22: 235–253.Google Scholar
  75. —,and D. G. Debouck. 1990.Phaseolus glabellus Piper, a noteworthy variant of theP. coccineus complex? Ann. Rep. Bean Improv. Coop. 33:124–125.Google Scholar
  76. Shii, C. T., A. Rabakoarihanta, M. C. Mok, and D. W. S. Mock. 1982. Embryo development in reciprocal crosses ofPhaseolus vulgaris L. andP. coccineus L. Theor. Appl. Genet. 62:59–64.Google Scholar
  77. Smartt, J. 1970. Interspecific hybridization between cultivated American species of the genusPhaseolus. Euphytica 19:480–489.CrossRefGoogle Scholar
  78. — 1973. The possible status ofPhaseolus coccineus L. ssp.darwinianus Hernandez X. et Miranda C. as a distinct species and cultigen of the genusPhaseolus. Euphytica 22:424–426.CrossRefGoogle Scholar
  79. — 1979. Interspecific hybridization in the grain legumes. A review. Econ. Bot. 33:329–337.Google Scholar
  80. — 1988. Morphological, physiological and biochemical changes inPhaseolus beans under domestication. Pages 143–161in P. Gepts, ed., Genetic resources ofPhaseolus beans. Kluwer Academic Publishers, Dordrecht, Holland.Google Scholar
  81. Standley, P. C, and J. A. Steyermark. 1946. Flora of Guatemala. Part V. Fieldiana, Botany 24:1–502.Google Scholar
  82. Steyermark, J. A. 1950. Flora of Guatemala. Ecology 31:368–372.CrossRefGoogle Scholar
  83. Sullivan, J. G., and G. Freytag. 1986. Predicting interspecific compatibilities in beans (Phaseolus) by seed protein electrophoresis. Euphytica 35:201–209.CrossRefGoogle Scholar
  84. Tarrago, M. N. 1980. El proceso de agriculturización en el Noroeste argentino, zona valliserrana. Pages 181–217in Actas del V Congreso Nacional de Arqueología Argentina, Tomo 1. Universidad Nacional de San Juan, Instituto de Investigaciones Arqueológicas y Museo, San Juan, Argentina.Google Scholar
  85. Thomas, H. 1964. Investigations into the interrelationship ofPhaseolus vulgaris L. andP. coccineus L. Genetica 35:59–74.CrossRefGoogle Scholar
  86. Torres, B. W. 1985. Las plantas útiles en el Mexico antiguio según las fuentes del siglo XVI. Pages 53–128in T. Rojas Rabiela and W. T. Sanders, eds., Historia de la agriculture, época prehispánica—siglo XVI, vol. 1, Instituto National de Antropología e Historia, Mexico, DF, Mexico.Google Scholar
  87. Van Eseltine, G. P. 1931. Variation in the lima bean,Phaseolus lunatus L., as illustrated by its synonymy. N.Y. St. Agric. Exp. Stn. Techn. Bull. 182:3–24.Google Scholar
  88. Wagner, P. L. 1964. Natural vegetation of Middle America. Pages 216–264in R. Wauchope, ed., Handbook of Middle American Indians. 1. Natural environment and early culture, Univ. Texas Press, Austin.Google Scholar
  89. Wall, J. R. 1970. Experimental introgression in the genusPhaseolus. 1. Effect of mating systems on interspecific gene flow. Evolution 24:356–366.CrossRefGoogle Scholar
  90. —,and T. L. York. 1957. Inheritance of seedling cotyledon position inPhaseolus species. J. Hered. 48:71–74.Google Scholar

Copyright information

© New York Botanical Garden, Bronx, NY 10458 U.S.A 1991

Authors and Affiliations

  • V. Schmit
    • 1
  • D. G. Debouck
    • 2
  1. 1.Genetic Resources UnitCentra International de Agricultura TropicalCaliCOLOMBIA
  2. 2.CIATIBPGR Research ProgrammeCentro International de Agricultura TropicalCaliCOLOMBIA

Personalised recommendations