Skip to main content
Log in

Catalase: A repertoire of unusual features

  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Catalases are antioxidant enzymes which catalyze the breakdown of hydrogen peroxide to water and oxygen, and are one of the oldest enzymes to be studied biochemically. The first crystal structure of a catalase appeared in the year 1980 and it revealed the tetrameric nature of the enzyme and presence of channels accessing the deeply buried active site heme. An interesting feature of the tetrameric structure is the characteristic interweaving or arm exchange of the subunits. The recent elucidation of the crystal structure of transport proteins (porins, aquaporins) showed that these proteins are also tetrameric in nature and posses channels. However, recent specific investigations focusing on the roles for these channels, in the mechanism of enzyme action of catalases, revealed significant similarities with that observed for the transport of water and/or glycerol, in aquaporins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yabuki, M., Kariya, S., Ishisaka, R., Yasuda, T., Yoshioka, T., Horton, A.A. and Utsumi, K. (1999) Resistance to nitric oxide-mediated apoptosis in HL-60 variant cells is associated with increased activities of Cu,Zn-superoxide dismutase and catalase. Free Radic. Biol. Med. 26 (3–4), 325–332.

    Article  PubMed  CAS  Google Scholar 

  2. Vuillaume, M. (1987) Reduced oxygen species, mutation, induction and cancer initiation. Mutat. Res. 186, 43–72.

    PubMed  CAS  Google Scholar 

  3. Halliwell, B. and Gutteridge, J.M. (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 219 (1), 1–14.

    PubMed  CAS  Google Scholar 

  4. Miyamoto, T, Hayashi, M., Takeuchi, A., Okamoto, T., Kawashima, S., Takii, T., Hayashi, H. and Onozaki, K. (1996) Identification of a novel growth-promoting factor with a wide target cell spectrum from various tumor cells as catalase. J. Biochem. (Tokyo), 120, 725–730.

    CAS  Google Scholar 

  5. Gaetani, G.F., Galiano, S., Canepa, L., Ferraris, A.M. and Kirkman, H.N. (1989) Catalase and glutathione peroxidase are equally active in detoxification of hydrogen peroxide in human erythrocytes. Blood 73 (1), 334–339.

    PubMed  CAS  Google Scholar 

  6. Nicholls P., Fita I. and Loewen P.C. (2001) Enzymology and structure of catalases. Adv. Inorg. Chem. 51, 51–106.

    Article  CAS  Google Scholar 

  7. Bravo, J., Verdaguer, N., Tormo, J., Betzel, C., Switala, J., Loewen, P.C., and Fita, I. (1995) Crystal structure of catalase HPII fromEscherichia coli. Structure 5, 491–502.

    Article  Google Scholar 

  8. Chelikani, P., Switala, J., Carpena, X., Fita, I., and Loewen, P.C. Covalently linked heme in catalases. In preparation.

  9. Murshudov, G.N., Grebenko, A.I., Barynin, V., Dauter, Z., Wilson, K.S., Vainshtein, B.K.,et al. (1996) Structure of the heme d ofPenicillium vitale andEscherichia coli catalases. J. Biol. Chem. 271, 8863–8868.

    Article  PubMed  CAS  Google Scholar 

  10. Loewen, P.C., Switala, J., von Ossowski, I., Hillar, A., Christie, A., Tattrie, B.,et al. (1993) Catalase HPII ofEscherichia coli catalyzes the conversion of protoheme to cis-heme d. Biochemistry 32, 10159–10164.

    Article  PubMed  CAS  Google Scholar 

  11. Sevinc, M.S., Switala, J., Bravo, J., Fita, I. and Loewen, P.C. (1998) Truncation and heme pocket mutations reduce production of functional catalase HPII inEscherichia coli. Protein Eng. 11, 549–555.

    Article  PubMed  CAS  Google Scholar 

  12. Bergdoll, M., Remy, M.H., Cagnon, C., Masson, J.M. and Dumas P. (1997) Proline-dependent oligomerization with arm exchange. Structure 5 (3), 391–401.

    Article  PubMed  CAS  Google Scholar 

  13. Ueda, M., Kinoshita, H., Maeda, S.I., Zou, W. and Tanaka, A. (2003) Structure-function study of the amino-terminal stretch of the catalase subunit molecule in oligomerization, heme binding, and activity expression. Appl. Microbiol. Biotechnol. 61 (5–6), 488–494.

    PubMed  CAS  Google Scholar 

  14. Andreoletti, P., Sainz, G., Jaquinod, M., Gagnon, J. and Jouve H.M. (2003) High-resolution structure and biochemical properties of a recombinantProteus mirabilis catalase depleted in iron. Proteins. 50, 261–271.

    Article  PubMed  CAS  Google Scholar 

  15. Chelikani, P., Donald, L.J., Duckworth, H.W. and Loewen P.C. (2003) Hydroperoxidase II ofEscherichia coli Exhibits Enhanced Resistance to Proteolytic Cleavage Compared to Other Catalases. Biochemistry. 42, 5729–5735.

    Article  PubMed  CAS  Google Scholar 

  16. Chelikani, P., Carpena, X., Perez-Luque, R., Donald, L.J., Duckworth, H.W., Switala, J., Fita, I. and Loewen P.C. (2005). Characterization of a large subunit catalase truncated by proteolytic cleavage. Biochemistry 44, 5597–5605.

    Article  PubMed  CAS  Google Scholar 

  17. Switala, J., O’Neil, J.O. and Loewen, P.C. (1999) Catalase HPII fromEscherichia coli exhibits enhanced resistance to denaturation. Biochemistry 38, 3895–3901.

    Article  PubMed  CAS  Google Scholar 

  18. Murthy, M.R.N., Reid, T.J., Sicignano, A., Tanaka, N. and Rossmann, M.G. (1981) Structure of beef liver catalase. J. Mol. Biol. 152, 465–499.

    Article  PubMed  CAS  Google Scholar 

  19. Murshudov, G.N., Melik-Adamyan, W.R., Grebenko, A.I., Barynin, V.V., Vagin, A.A., Vainshtein, B.K., Dauter, Z. and Wilson, K. (1982) Three-dimensional structure of catalase fromMicrococcus lysodeikticus at 1.5Å resolution. FEBS Lett. 312, 127–131.

    Article  Google Scholar 

  20. Gouet, P., Jouve, H.M. and Dideberg O. (1995) Crystal structure ofProteus mirabilis PR catalase with and without bound NADPH. J. Mol. Biol. 249, 933–954.

    Article  PubMed  CAS  Google Scholar 

  21. Maté, M.J., Zamocky, M., Nykyri, L.M., Herzog, C., Alzari, P.M., Betzel, C., Koller, F. and Fita, I. (1999) Structure of catalase-A fromSaccharomyces cerevisiae. J. Mol. Biol. 286, 135–139.

    Article  PubMed  Google Scholar 

  22. Putnam, C.D., Arvai, A.S., Bourne, Y. and Tainer, J.A. (1999) Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. J. Mol. Biol. 296, 295–309.

    Article  CAS  Google Scholar 

  23. Vainshtein, B.K., Melik-Adamyan, W.R., Barynin, V.V., Vagin, A.A. and Grebenko, A.I. (1981) Three-dimensional structure of the enzyme catalase. Nature 293, 411–412.

    Article  PubMed  CAS  Google Scholar 

  24. Bravo, J., Maté, M.J., Schneider, T., Switala, J., Wilson, K., Loewen, P.C. and Fita, I. (1999) Structure of catalase HPII fromEscherichia coli at 1.9 Å resolution. Proteins 34, 155–166.

    Article  PubMed  CAS  Google Scholar 

  25. Carpena, X., Soriano, M., Klotz, M.G., Duckworth, H.W., Donald, L.J., Melik-Adamyan, W., Fita, I. and Loewen P.C. (2003) Structure of the clade 1 catalase, CatF ofPseudomonas syringae, at 1.8 Å resolution. Proteins 50, 423–436.

    Article  PubMed  CAS  Google Scholar 

  26. Antonyuk, S.V., Melik-Adamyan, V.R., Popov, A.N., Iamzin, V.S., Hampstead, P.D., Harrison, P.M., Artymyuk, P.J. and Barynin, V.V. (2000) Three-dimensional structure of the enzyme dimanganese catalase fromThermus Thermophilus at 1 Å resolution. Crystallogr. Reports 45, 105–116.

    Article  Google Scholar 

  27. Barynin, V.V., Whittaker, M.M., Antonyuk, S.V., Lamzin, V.S., Harrison, P.M., Artymiuk, P.J. and Whittaker, J.W. (2001) Crystal structure of manganese catalase fromLactobacillus plantarum. Structure 9, 725–738.

    Article  PubMed  CAS  Google Scholar 

  28. Noble Lectures 2003 (nobelprize.org/chemistry/laureates/2003/).

  29. Huang, X., Holden, H.M. and Raushel, F.M. (2001) Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu. Rev. Biochem. 70, 149–180.

    Article  PubMed  CAS  Google Scholar 

  30. Murata, K., Mitsuoka, K., Hirai, T., Walz, T., Agre, P., Heymann, J.B., Engel, A. and Fujiyoshi, Y. (2000) Structural determinants of water permeation through aquaporin-1. Nature, 407 (6804), 599–605.

    Article  PubMed  CAS  Google Scholar 

  31. Chelikani, P., Carpena, X., Fita, I. and Loewen, P.C. (2003) An electrical potential in the access channel of catalases enhances catalysis. J. Biol. Chem. 278 (33), 31290–31296.

    Article  PubMed  CAS  Google Scholar 

  32. Fu, D.X., Libson, A., Miercke, L.J.W., Weitzman, C., Nollert, P., Krucinski, J. and Stroud, R.M. (2000) Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290, 481–486.

    Article  PubMed  CAS  Google Scholar 

  33. Kalko, S.G., Gelpi, J.L., Fita, I. and Orozco, M. (2001) Theoretical study of the mechanisms of substrate recognition by catalase. J. Amer. Chem. Soc. 123, 9665–9672.

    Article  CAS  Google Scholar 

  34. Amara, P., Andreoletti, P., Jouve, H.M. and Field, M.J. (2001) Ligand diffusion in the catalase from Proteus mirabilis: A molecular dynamics study. Protein Sci. 10, 1927–1935.

    Article  PubMed  CAS  Google Scholar 

  35. Radhakrishnan, T.M., Raghupathy, E. and Sarma, P.S. (1963) The influence of chymotrypsin and pepsin on beef liver catalase and horse radish peroxidase. Ind. J. Chem. 1, 40–43.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashen Chelikani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chelikani, P., Ramana, T. & Radhakrishnan, T.M. Catalase: A repertoire of unusual features. Indian J Clin Biochem 20, 131–135 (2005). https://doi.org/10.1007/BF02867412

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02867412

Keywords

Navigation