Indian Journal of Clinical Biochemistry

, Volume 20, Issue 2, pp 131–135 | Cite as

Catalase: A repertoire of unusual features

  • Prashen Chelikani
  • T. Ramana
  • T. M. Radhakrishnan


Catalases are antioxidant enzymes which catalyze the breakdown of hydrogen peroxide to water and oxygen, and are one of the oldest enzymes to be studied biochemically. The first crystal structure of a catalase appeared in the year 1980 and it revealed the tetrameric nature of the enzyme and presence of channels accessing the deeply buried active site heme. An interesting feature of the tetrameric structure is the characteristic interweaving or arm exchange of the subunits. The recent elucidation of the crystal structure of transport proteins (porins, aquaporins) showed that these proteins are also tetrameric in nature and posses channels. However, recent specific investigations focusing on the roles for these channels, in the mechanism of enzyme action of catalases, revealed significant similarities with that observed for the transport of water and/or glycerol, in aquaporins.


Aquaporins Catalases Channels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yabuki, M., Kariya, S., Ishisaka, R., Yasuda, T., Yoshioka, T., Horton, A.A. and Utsumi, K. (1999) Resistance to nitric oxide-mediated apoptosis in HL-60 variant cells is associated with increased activities of Cu,Zn-superoxide dismutase and catalase. Free Radic. Biol. Med. 26 (3–4), 325–332.PubMedCrossRefGoogle Scholar
  2. 2.
    Vuillaume, M. (1987) Reduced oxygen species, mutation, induction and cancer initiation. Mutat. Res. 186, 43–72.PubMedGoogle Scholar
  3. 3.
    Halliwell, B. and Gutteridge, J.M. (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 219 (1), 1–14.PubMedGoogle Scholar
  4. 4.
    Miyamoto, T, Hayashi, M., Takeuchi, A., Okamoto, T., Kawashima, S., Takii, T., Hayashi, H. and Onozaki, K. (1996) Identification of a novel growth-promoting factor with a wide target cell spectrum from various tumor cells as catalase. J. Biochem. (Tokyo), 120, 725–730.Google Scholar
  5. 5.
    Gaetani, G.F., Galiano, S., Canepa, L., Ferraris, A.M. and Kirkman, H.N. (1989) Catalase and glutathione peroxidase are equally active in detoxification of hydrogen peroxide in human erythrocytes. Blood 73 (1), 334–339.PubMedGoogle Scholar
  6. 6.
    Nicholls P., Fita I. and Loewen P.C. (2001) Enzymology and structure of catalases. Adv. Inorg. Chem. 51, 51–106.CrossRefGoogle Scholar
  7. 7.
    Bravo, J., Verdaguer, N., Tormo, J., Betzel, C., Switala, J., Loewen, P.C., and Fita, I. (1995) Crystal structure of catalase HPII fromEscherichia coli. Structure 5, 491–502.CrossRefGoogle Scholar
  8. 8.
    Chelikani, P., Switala, J., Carpena, X., Fita, I., and Loewen, P.C. Covalently linked heme in catalases. In preparation.Google Scholar
  9. 9.
    Murshudov, G.N., Grebenko, A.I., Barynin, V., Dauter, Z., Wilson, K.S., Vainshtein, B.K.,et al. (1996) Structure of the heme d ofPenicillium vitale andEscherichia coli catalases. J. Biol. Chem. 271, 8863–8868.PubMedCrossRefGoogle Scholar
  10. 10.
    Loewen, P.C., Switala, J., von Ossowski, I., Hillar, A., Christie, A., Tattrie, B.,et al. (1993) Catalase HPII ofEscherichia coli catalyzes the conversion of protoheme to cis-heme d. Biochemistry 32, 10159–10164.PubMedCrossRefGoogle Scholar
  11. 11.
    Sevinc, M.S., Switala, J., Bravo, J., Fita, I. and Loewen, P.C. (1998) Truncation and heme pocket mutations reduce production of functional catalase HPII inEscherichia coli. Protein Eng. 11, 549–555.PubMedCrossRefGoogle Scholar
  12. 12.
    Bergdoll, M., Remy, M.H., Cagnon, C., Masson, J.M. and Dumas P. (1997) Proline-dependent oligomerization with arm exchange. Structure 5 (3), 391–401.PubMedCrossRefGoogle Scholar
  13. 13.
    Ueda, M., Kinoshita, H., Maeda, S.I., Zou, W. and Tanaka, A. (2003) Structure-function study of the amino-terminal stretch of the catalase subunit molecule in oligomerization, heme binding, and activity expression. Appl. Microbiol. Biotechnol. 61 (5–6), 488–494.PubMedGoogle Scholar
  14. 14.
    Andreoletti, P., Sainz, G., Jaquinod, M., Gagnon, J. and Jouve H.M. (2003) High-resolution structure and biochemical properties of a recombinantProteus mirabilis catalase depleted in iron. Proteins. 50, 261–271.PubMedCrossRefGoogle Scholar
  15. 15.
    Chelikani, P., Donald, L.J., Duckworth, H.W. and Loewen P.C. (2003) Hydroperoxidase II ofEscherichia coli Exhibits Enhanced Resistance to Proteolytic Cleavage Compared to Other Catalases. Biochemistry. 42, 5729–5735.PubMedCrossRefGoogle Scholar
  16. 16.
    Chelikani, P., Carpena, X., Perez-Luque, R., Donald, L.J., Duckworth, H.W., Switala, J., Fita, I. and Loewen P.C. (2005). Characterization of a large subunit catalase truncated by proteolytic cleavage. Biochemistry 44, 5597–5605.PubMedCrossRefGoogle Scholar
  17. 17.
    Switala, J., O’Neil, J.O. and Loewen, P.C. (1999) Catalase HPII fromEscherichia coli exhibits enhanced resistance to denaturation. Biochemistry 38, 3895–3901.PubMedCrossRefGoogle Scholar
  18. 18.
    Murthy, M.R.N., Reid, T.J., Sicignano, A., Tanaka, N. and Rossmann, M.G. (1981) Structure of beef liver catalase. J. Mol. Biol. 152, 465–499.PubMedCrossRefGoogle Scholar
  19. 19.
    Murshudov, G.N., Melik-Adamyan, W.R., Grebenko, A.I., Barynin, V.V., Vagin, A.A., Vainshtein, B.K., Dauter, Z. and Wilson, K. (1982) Three-dimensional structure of catalase fromMicrococcus lysodeikticus at 1.5Å resolution. FEBS Lett. 312, 127–131.CrossRefGoogle Scholar
  20. 20.
    Gouet, P., Jouve, H.M. and Dideberg O. (1995) Crystal structure ofProteus mirabilis PR catalase with and without bound NADPH. J. Mol. Biol. 249, 933–954.PubMedCrossRefGoogle Scholar
  21. 21.
    Maté, M.J., Zamocky, M., Nykyri, L.M., Herzog, C., Alzari, P.M., Betzel, C., Koller, F. and Fita, I. (1999) Structure of catalase-A fromSaccharomyces cerevisiae. J. Mol. Biol. 286, 135–139.PubMedCrossRefGoogle Scholar
  22. 22.
    Putnam, C.D., Arvai, A.S., Bourne, Y. and Tainer, J.A. (1999) Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. J. Mol. Biol. 296, 295–309.CrossRefGoogle Scholar
  23. 23.
    Vainshtein, B.K., Melik-Adamyan, W.R., Barynin, V.V., Vagin, A.A. and Grebenko, A.I. (1981) Three-dimensional structure of the enzyme catalase. Nature 293, 411–412.PubMedCrossRefGoogle Scholar
  24. 24.
    Bravo, J., Maté, M.J., Schneider, T., Switala, J., Wilson, K., Loewen, P.C. and Fita, I. (1999) Structure of catalase HPII fromEscherichia coli at 1.9 Å resolution. Proteins 34, 155–166.PubMedCrossRefGoogle Scholar
  25. 25.
    Carpena, X., Soriano, M., Klotz, M.G., Duckworth, H.W., Donald, L.J., Melik-Adamyan, W., Fita, I. and Loewen P.C. (2003) Structure of the clade 1 catalase, CatF ofPseudomonas syringae, at 1.8 Å resolution. Proteins 50, 423–436.PubMedCrossRefGoogle Scholar
  26. 26.
    Antonyuk, S.V., Melik-Adamyan, V.R., Popov, A.N., Iamzin, V.S., Hampstead, P.D., Harrison, P.M., Artymyuk, P.J. and Barynin, V.V. (2000) Three-dimensional structure of the enzyme dimanganese catalase fromThermus Thermophilus at 1 Å resolution. Crystallogr. Reports 45, 105–116.CrossRefGoogle Scholar
  27. 27.
    Barynin, V.V., Whittaker, M.M., Antonyuk, S.V., Lamzin, V.S., Harrison, P.M., Artymiuk, P.J. and Whittaker, J.W. (2001) Crystal structure of manganese catalase fromLactobacillus plantarum. Structure 9, 725–738.PubMedCrossRefGoogle Scholar
  28. 28.
    Noble Lectures 2003 ( Scholar
  29. 29.
    Huang, X., Holden, H.M. and Raushel, F.M. (2001) Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu. Rev. Biochem. 70, 149–180.PubMedCrossRefGoogle Scholar
  30. 30.
    Murata, K., Mitsuoka, K., Hirai, T., Walz, T., Agre, P., Heymann, J.B., Engel, A. and Fujiyoshi, Y. (2000) Structural determinants of water permeation through aquaporin-1. Nature, 407 (6804), 599–605.PubMedCrossRefGoogle Scholar
  31. 31.
    Chelikani, P., Carpena, X., Fita, I. and Loewen, P.C. (2003) An electrical potential in the access channel of catalases enhances catalysis. J. Biol. Chem. 278 (33), 31290–31296.PubMedCrossRefGoogle Scholar
  32. 32.
    Fu, D.X., Libson, A., Miercke, L.J.W., Weitzman, C., Nollert, P., Krucinski, J. and Stroud, R.M. (2000) Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290, 481–486.PubMedCrossRefGoogle Scholar
  33. 33.
    Kalko, S.G., Gelpi, J.L., Fita, I. and Orozco, M. (2001) Theoretical study of the mechanisms of substrate recognition by catalase. J. Amer. Chem. Soc. 123, 9665–9672.CrossRefGoogle Scholar
  34. 34.
    Amara, P., Andreoletti, P., Jouve, H.M. and Field, M.J. (2001) Ligand diffusion in the catalase from Proteus mirabilis: A molecular dynamics study. Protein Sci. 10, 1927–1935.PubMedCrossRefGoogle Scholar
  35. 35.
    Radhakrishnan, T.M., Raghupathy, E. and Sarma, P.S. (1963) The influence of chymotrypsin and pepsin on beef liver catalase and horse radish peroxidase. Ind. J. Chem. 1, 40–43.Google Scholar

Copyright information

© Association of Clinical Biochemists of India 2005

Authors and Affiliations

  • Prashen Chelikani
    • 1
  • T. Ramana
    • 2
  • T. M. Radhakrishnan
    • 2
  1. 1.Department of BiologyMassachusetts Institute of TechnologyCambridgeU.S.A
  2. 2.Biotechnology divisionAndhra UniversityVisakhapatnamIndia

Personalised recommendations