Metallurgical and Materials Transactions A

, Volume 17, Issue 10, pp 1851–1863 | Cite as

Metal vapors in gas tungsten arcs: part i. spectroscopy and monochromatic photography

  • G. J. Dunn
  • C. D. Allemand
  • T. W. Eagar


Metal vapors in gas tungsten welding arcs were studied in order to determine the effects of these vapors on arc properties and subsequently on weld bead configuration. Emission spectroscopy and monochromatic photography were used to determine the prominent metal species present and their distribution in arcs on stainless steel. It was found that, in addition to the expected species (Fe, Mn, Cr), calcium and aluminum vapors were also detectable, although these elements were present in the base plate only at very low concentrations. All metal vapors were determined to be concentrated just above the weld pool in high current arcs, but were also detected in the upper regions of low current arcs. Aluminum, calcium, and sometimes thorium were found to vaporize from the tungsten electrode.


Metallurgical Transaction Weld Pool Metal Vapor Cathode Spot Tungsten Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.S. Glickstein and W. Yeniscavich:Welding J., 1977, vol. 56, pp. 1–18.Google Scholar
  2. 2.
    H.C. Ludwig:Welding J., 1968, vol. 47, pp. 234s-40s.Google Scholar
  3. 3.
    T. Moisio and J. Leinonen: inArc Physics and Weld Pool Behavior, Welding Institute, Cambridge, England, 1980, pp. 285–87.Google Scholar
  4. 4.
    J.C. Metcalfe and M.B.C. Quigley:Welding J., 1977, vol. 56, pp. 133s-39s.Google Scholar
  5. 5.
    G.W. Oyler, R.A. Matuszesk, and C.R. Garr:Welding J., 1967, vol. 46, pp. 1006–11.Google Scholar
  6. 6.
    M. M. Savitskii and G. I. Leskov:Autom. Weld., 1980, vol. 33, no. 9, pp. 11–16.Google Scholar
  7. 7.
    W. S. Bennett and G. S. Mills:Welding J., 1974, vol. 53, pp. 548s-53s.Google Scholar
  8. 8.
    R. A. Patterson:Welding J., 1978, vol. 57, pp. 383s-86s.Google Scholar
  9. 9.
    D.W. Dickinson: Republic Steel Corp., Independence, OH, unpublished research, 1981–83.Google Scholar
  10. 10.
    T. F. Chase, Jr. and W. F. Savage:Welding J., 1971, vol. 50, pp. 467s-73s.Google Scholar
  11. 11.
    W.F. Savage, E.F. Nippes, and G.M. Goodwin:Welding J., 1977, vol. 56, pp. 126s-32s.Google Scholar
  12. 12.
    W. F. Savage, C. D. Lundin, and G. Goodwin:Welding J., 1968, vol. 47, pp. 313s, 322s, 336s.Google Scholar
  13. 13.
    S. S. Glickstein: inArc Physics and Weld Pool Behavior, Welding Institute, Cambridge, England, 1980, pp. 1–16.Google Scholar
  14. 14.
    E. Pfender:WRC Progress Reports, 1982, vol. 37, no. 2, pp. 18–32.Google Scholar
  15. 15.
    A.N. Zaidel’, V.K. Prokof’ev, S.M. Raiskii, V.A. Slavnyi, and E. Ya. Shreider:Tables of Spectral Lines, 3rd ed., IFI/Plenum, New York, NY, 1970.Google Scholar
  16. 16.
    E. Friedman and S.S. Glickstein:Welding J., 1976, vol. 55, pp. 4085–4205.Google Scholar
  17. 17.
    A. Block-Bolten and T. W. Eagar: inTrends in Welding Research, S.A. David, ed., ASM, Metals Park, OH, 1982, pp. 53–73.Google Scholar
  18. 18.
    S.S. Glickstein:Welding J., 1976, vol. 55, pp. 222s-29s.Google Scholar
  19. 19.
    C.B. Shaw, Jr.:Welding J., 1975, vol. 54, pp. 33s-44s.Google Scholar
  20. 20.
    J.F. Key, M.E. McIlwain, and L. Isaacson: inSixth International Conference on Gas Discharges and Their Applications, Conf. Publ. No. 189, part 2, Institution of Electrical Engineers, New York, NY, 1980, pp. 235–38.Google Scholar
  21. 21.
    M.B.C. Quigley, P.H. Richards, D.T. Swift-Hook, and A.E.F. Glick:J. Phys. D., 1973, vol. 6, pp. 2250–58.CrossRefGoogle Scholar
  22. 22.
    G. S. Mills:Welding J., 1979, vol. 58, pp. 21s-24sGoogle Scholar
  23. 23.
    O.N. Ivanova:Autom. Weld., 1968, vol. 21, no. 2, pp. 12–15.Google Scholar
  24. 24.
    C.R. Heiple and J. R. Roper:Welding J., 1981, vol. 60, pp. 143s-45s.Google Scholar
  25. 25.
    C.R. Heiple and J. R. Roper:Welding J., 1982, vol. 61, pp. 97s-102s.Google Scholar
  26. 26.
    C.R. Heiple and J. R. Roper: inTrends in Welding Research in the United States, S.A. David, ed., ASM, Metals Park, OH, 1982, pp. 489–520.Google Scholar
  27. 27.
    C. R. Heiple, J. R. Roper, R. T. Stagner, and R. J. Aden:Welding J., 1983, vol. 62, pp. 72s-77s.Google Scholar
  28. 28.
    A.M. Makara, M. M. Savitskii, B.N. Kushnirenko, N. I. Varenko, A. D. Mel’nik, D. N. Ganelin, and A. M. Toschev:Autom. Weld., 1977, vol. 30, no. 9, pp. 1–3.Google Scholar
  29. 29.
    R.E. Sundell: General Electric Co., Schenectady, NY, unpublished research, 1983–84.Google Scholar
  30. 30.
    Y. Arata, S. Miyake, H. Matsuoka, and H. Kishimoto:Trans. JWRI, 1981, vol. 10, pp. 33–38. (Note: this report neglects aberrations inherent to the spectrograph, and therefore attributes all aberrations to the SIT detector.)Google Scholar
  31. 31.
    C. Allemand:Appl. Optics, 1983, vol. 22, pp. 16–17.CrossRefGoogle Scholar
  32. 32.
    E. W. Kim and C.D. Allemand: MIT, Cambridge, MA, unpublished research, 1985.Google Scholar
  33. 33.
    N. S. Tsai: Doctoral Thesis, MIT, Cambridge, MA, June 1983.Google Scholar
  34. 34.
    S. S. Glickstein, E. Friedman, and W. Yeniscavich:Welding J., 1975, vol. 54, pp. 113s-22s.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1986

Authors and Affiliations

  • G. J. Dunn
    • 1
  • C. D. Allemand
    • 2
  • T. W. Eagar
    • 2
  1. 1.IBTBeverly
  2. 2.Massachusetts Institute of TechnologyCambridge

Personalised recommendations