Advertisement

Metallurgical Transactions A

, Volume 16, Issue 2, pp 267–274 | Cite as

Determination of the coordination number of liquid metals near the melting point

  • Anthony L. Hines
  • Hugh A. Walls
  • Kanhaiyalal R. Jethani
Physical Chemistry

Abstract

A plot of the relation between the empty volume fraction and the coordination number as a function of a geometric parameter was constructed. This plot was based on regular crystal structures (fcc, bcc, simple cubic, and diamond cubic) in the solid state. The graphical correlation was used to predict the coordination numbers for liquid metals near the melting point. The coordination numbers of 39 liquid metals were predicted by using Pauling’s univalent ionic radius, the liquid density, and the nearest neighbor separation distance.

Keywords

Metallurgical Transaction Geometric Parameter Liquid Metal Coordination Number Coordination Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. L. Hines, H. A. Walls, and D. W. Arnold:Metall. Trans. B, 1975, vol. 6B, pp. 484–86.CrossRefGoogle Scholar
  2. 2.
    A.L. Hines and H.A. Walls:Metall. Trans. A, 1979, vol. 10A, pp. 1365–70.Google Scholar
  3. 3.
    N.R. Kestner and O. Sinanoglu:J. Chem. Phys., 1963, vol.38, pp. 1730–39.CrossRefGoogle Scholar
  4. 4.
    J.D. Bernai:Nature (London), 1959, vol. 183, pp. 141–47.CrossRefGoogle Scholar
  5. 5.
    J. D. Bemal and S. V. King: inPhysics of Simple Liquids, H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke, eds., John Wiley & Sons, New York, NY, 1968, pp. 231–52.Google Scholar
  6. 6.
    J.R. Wilson:Metall. Rev., 1965, vol. 10, no. 40, p. 538.Google Scholar
  7. 7.
    K. Furukawa:Rep. Prog. Phys., 1962, vol. 25, pp. 395–440.CrossRefGoogle Scholar
  8. 8.
    R. M. Waghorne, V. G. Rivlin, and G. I. Williams:Adv. Phys., 1967, vol. 16, pp. 215–22.CrossRefGoogle Scholar
  9. 9.
    Y. Marcus:Introduction to Liquid State Chemistry, John Wiley & Sons, New York, NY, 1977, p. 93.Google Scholar
  10. 10.
    Y. Waseda: inLiquid Metals 1976 (3rd International Conference on Liquid Metals), R. Evans and D.A. Greenwood, eds., Institute of Physics, London, 1976, pp.230–40.Google Scholar
  11. 11.
    J.D. Bemal and J. Mason:Nature (London), 1960, vol. 188, pp. 910–11.CrossRefGoogle Scholar
  12. 12.
    G.D. Scott:Nature (London), 1962, vol. 194, pp. 956–57.CrossRefGoogle Scholar
  13. 13.
    P. G. Mikolaj and C.J. Pings:Phys. Chem. Liq., 1968, vol. 1, pp. 93–108.CrossRefGoogle Scholar
  14. 14.
    K. Gotoh:Nature (London), Phys. Sci., 1971, vol. 231, pp. 108–10.CrossRefGoogle Scholar
  15. 15.
    J.W. Ross and W.A. Miller:Can. Metall. Q., 1972, vol. 11, pp. 459–61.Google Scholar
  16. 16.
    H.A. Walls and W.R. Upthegrove:Acta Metall., 1964, vol. 12, pp. 461–71.CrossRefGoogle Scholar
  17. 17.
    L. Pauling:J. Am. Chem. Soc., 1947, vol. 69, pp. 542–53.CrossRefGoogle Scholar
  18. 18.
    Metals Handbook, 7th ed., T. Lyman, ed., ASM, Metals Park, OH, 1948, pp. 19–21.Google Scholar
  19. 19.
    F. C. Frank and J. S. Kasper:Acta Cryst., 1959, vol. 12, pp. 483–99.CrossRefGoogle Scholar
  20. 20.
    A. F. Crawley:Int. Metall. Rev., 1974, vol. 19, pp. 32–48.Google Scholar
  21. 21.
    Y. Waseda and K. Suzuki:Phys. Status Solidi, 1970, vol. 39, pp. 669–78.CrossRefGoogle Scholar
  22. 22.
    O. Pfannenschmid:Z. Naturforsch., 1960, vol. 15a, pp. 603–12.Google Scholar
  23. 23.
    R. Hezel and S. Steeb:Phys. Kondens. Mater., 1972, vol. 14, pp. 314–23.CrossRefGoogle Scholar
  24. 24.
    C. Gamertsfelder:J.Chem. Phys., 1941, vol. 9, pp. 450–57.CrossRefGoogle Scholar
  25. 25.
    H. Hendus:Z. Naturforsch., 1947, vol. 2a, pp. 505–21.Google Scholar
  26. 26.
    P.C. Sharrah, J.I. Petz, and R.F. Kruh:J. Chem. Phys., 1960, vol. 32, pp. 241–46.CrossRefGoogle Scholar
  27. 27.
    P.C. Sharrah and G.P. Smith:J. Chem. Phys., 1953, vol. 21, pp. 228–32.CrossRefGoogle Scholar
  28. 28.
    N. S. Gingrich and L. Heaton:J. Chem. Phys., 1961, vol. 34, pp. 873–78.CrossRefGoogle Scholar
  29. 29.
    K. Furukawa, B.R. Orton, J. Hamor, and G.I. Williams:Philos. Mag., 1963, vol. 8, pp. 141–55.CrossRefGoogle Scholar
  30. 30.
    S.E. Rodriguez and C.J. Pings:J. Chem. Phys., 1965, vol. 42, pp. 2435–37.CrossRefGoogle Scholar
  31. 31.
    R. F. Kruh, G. T. Clayton, C. Head, and G. Sandlin:Phys. Rev., 1963, vol. 129, pp. 1479–80.CrossRefGoogle Scholar
  32. 32.
    H. Hendus:Z. Naturforsch., 1948, vol. 3a, pp. 416–22.Google Scholar
  33. 33.
    G.H. Vineyard:J. Chem. Phys., 1954, vol. 22, pp. 1665–67.CrossRefGoogle Scholar
  34. 34.
    CD. Thomas and N. S. Gingrich:J. Chem. Phys., 1938, vol. 6, pp. 411–15.CrossRefGoogle Scholar
  35. 35.
    S. Woerner, S. Steeb, and R. Hezel:Z. Metallk., 1965, vol. 56, pp. 682–85.Google Scholar
  36. 36.
    H. K. F. Muller and H. Hendus:Z. Naturforsch., 1957, vol. 12a, pp. 102–11.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1985

Authors and Affiliations

  • Anthony L. Hines
    • 1
  • Hugh A. Walls
    • 2
    • 3
  • Kanhaiyalal R. Jethani
    • 1
  1. 1.The Oklahoma State UniversityStillwater
  2. 2.Planning and AnalysisUSA
  3. 3.University of Texas at AustinAustin

Personalised recommendations