Skip to main content
Log in

Determination of the coordination number of liquid metals near the melting point

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A plot of the relation between the empty volume fraction and the coordination number as a function of a geometric parameter was constructed. This plot was based on regular crystal structures (fcc, bcc, simple cubic, and diamond cubic) in the solid state. The graphical correlation was used to predict the coordination numbers for liquid metals near the melting point. The coordination numbers of 39 liquid metals were predicted by using Pauling’s univalent ionic radius, the liquid density, and the nearest neighbor separation distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Hines, H. A. Walls, and D. W. Arnold:Metall. Trans. B, 1975, vol. 6B, pp. 484–86.

    Article  CAS  Google Scholar 

  2. A.L. Hines and H.A. Walls:Metall. Trans. A, 1979, vol. 10A, pp. 1365–70.

    CAS  Google Scholar 

  3. N.R. Kestner and O. Sinanoglu:J. Chem. Phys., 1963, vol.38, pp. 1730–39.

    Article  Google Scholar 

  4. J.D. Bernai:Nature (London), 1959, vol. 183, pp. 141–47.

    Article  Google Scholar 

  5. J. D. Bemal and S. V. King: inPhysics of Simple Liquids, H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke, eds., John Wiley & Sons, New York, NY, 1968, pp. 231–52.

    Google Scholar 

  6. J.R. Wilson:Metall. Rev., 1965, vol. 10, no. 40, p. 538.

    Google Scholar 

  7. K. Furukawa:Rep. Prog. Phys., 1962, vol. 25, pp. 395–440.

    Article  Google Scholar 

  8. R. M. Waghorne, V. G. Rivlin, and G. I. Williams:Adv. Phys., 1967, vol. 16, pp. 215–22.

    Article  CAS  Google Scholar 

  9. Y. Marcus:Introduction to Liquid State Chemistry, John Wiley & Sons, New York, NY, 1977, p. 93.

    Google Scholar 

  10. Y. Waseda: inLiquid Metals 1976 (3rd International Conference on Liquid Metals), R. Evans and D.A. Greenwood, eds., Institute of Physics, London, 1976, pp.230–40.

    Google Scholar 

  11. J.D. Bemal and J. Mason:Nature (London), 1960, vol. 188, pp. 910–11.

    Article  Google Scholar 

  12. G.D. Scott:Nature (London), 1962, vol. 194, pp. 956–57.

    Article  CAS  Google Scholar 

  13. P. G. Mikolaj and C.J. Pings:Phys. Chem. Liq., 1968, vol. 1, pp. 93–108.

    Article  CAS  Google Scholar 

  14. K. Gotoh:Nature (London), Phys. Sci., 1971, vol. 231, pp. 108–10.

    Article  CAS  Google Scholar 

  15. J.W. Ross and W.A. Miller:Can. Metall. Q., 1972, vol. 11, pp. 459–61.

    CAS  Google Scholar 

  16. H.A. Walls and W.R. Upthegrove:Acta Metall., 1964, vol. 12, pp. 461–71.

    Article  CAS  Google Scholar 

  17. L. Pauling:J. Am. Chem. Soc., 1947, vol. 69, pp. 542–53.

    Article  CAS  Google Scholar 

  18. Metals Handbook, 7th ed., T. Lyman, ed., ASM, Metals Park, OH, 1948, pp. 19–21.

    Google Scholar 

  19. F. C. Frank and J. S. Kasper:Acta Cryst., 1959, vol. 12, pp. 483–99.

    Article  CAS  Google Scholar 

  20. A. F. Crawley:Int. Metall. Rev., 1974, vol. 19, pp. 32–48.

    CAS  Google Scholar 

  21. Y. Waseda and K. Suzuki:Phys. Status Solidi, 1970, vol. 39, pp. 669–78.

    Article  CAS  Google Scholar 

  22. O. Pfannenschmid:Z. Naturforsch., 1960, vol. 15a, pp. 603–12.

    CAS  Google Scholar 

  23. R. Hezel and S. Steeb:Phys. Kondens. Mater., 1972, vol. 14, pp. 314–23.

    Article  CAS  Google Scholar 

  24. C. Gamertsfelder:J.Chem. Phys., 1941, vol. 9, pp. 450–57.

    Article  CAS  Google Scholar 

  25. H. Hendus:Z. Naturforsch., 1947, vol. 2a, pp. 505–21.

    CAS  Google Scholar 

  26. P.C. Sharrah, J.I. Petz, and R.F. Kruh:J. Chem. Phys., 1960, vol. 32, pp. 241–46.

    Article  CAS  Google Scholar 

  27. P.C. Sharrah and G.P. Smith:J. Chem. Phys., 1953, vol. 21, pp. 228–32.

    Article  CAS  Google Scholar 

  28. N. S. Gingrich and L. Heaton:J. Chem. Phys., 1961, vol. 34, pp. 873–78.

    Article  CAS  Google Scholar 

  29. K. Furukawa, B.R. Orton, J. Hamor, and G.I. Williams:Philos. Mag., 1963, vol. 8, pp. 141–55.

    Article  CAS  Google Scholar 

  30. S.E. Rodriguez and C.J. Pings:J. Chem. Phys., 1965, vol. 42, pp. 2435–37.

    Article  CAS  Google Scholar 

  31. R. F. Kruh, G. T. Clayton, C. Head, and G. Sandlin:Phys. Rev., 1963, vol. 129, pp. 1479–80.

    Article  CAS  Google Scholar 

  32. H. Hendus:Z. Naturforsch., 1948, vol. 3a, pp. 416–22.

    CAS  Google Scholar 

  33. G.H. Vineyard:J. Chem. Phys., 1954, vol. 22, pp. 1665–67.

    Article  CAS  Google Scholar 

  34. CD. Thomas and N. S. Gingrich:J. Chem. Phys., 1938, vol. 6, pp. 411–15.

    Article  CAS  Google Scholar 

  35. S. Woerner, S. Steeb, and R. Hezel:Z. Metallk., 1965, vol. 56, pp. 682–85.

    CAS  Google Scholar 

  36. H. K. F. Muller and H. Hendus:Z. Naturforsch., 1957, vol. 12a, pp. 102–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hines, A.L., Walls, H.A. & Jethani, K.R. Determination of the coordination number of liquid metals near the melting point. Metall Trans A 16, 267–274 (1985). https://doi.org/10.1007/BF02816053

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02816053

Keywords

Navigation