Advertisement

Metallurgical Transactions A

, Volume 10, Issue 12, pp 1881–1887 | Cite as

The role of dislocation substructures in fatigue crack propagation in copper and alpha brass

  • Hitoshi Ishii
  • Kazuhiko Yukawa
Mechanical Behavior

Abstract

The effect of dislocation substructures on fatigue crack propagation (FCP) behavior in copper and alpha brass was studied. Various dislocation substructures were obtained by prestraining in tension. Dislocation cells were formed by this prestraining in copper and 90/10 brass and when they formed the resistance to FCP at intermediate propagation rates (5×10−9 to ∼10−7 m/cycle) increased with increasing prestrain. Planar dislocation arrays were observed in 70/30 brass instead of cells, and the effect of prestraining on the FCP resistance was insignificant. From the FCP data for each material it was observed that, regardless of the difference in the dislocation substructures and grain sizes, the two constantsC andm in the Paris equation,da/dN=C(ΔK) m, were interrelated. Possible relations between the cyclic strain hardening exponent andm are discussed. The influence of both prestrain and grain size on threshold behavior was also studied.

Keywords

Metallurgical Transaction Fatigue Strength Cyclic Strain Dislocation Substructure Threshold Stress Intensity Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. H. Wanhill:Eng. Fract. Mech., 1978, vol. 10, p. 337.CrossRefGoogle Scholar
  2. 2.
    C. Laird:Met. Trans. A, 1977, vol. 8A, p. 851.CrossRefGoogle Scholar
  3. 3.
    A. J. McEvily, Jr., R. C. Boettner, and A. P. Bond:J. Inst. Metals, 1964–65, vol. 93, p. 481.Google Scholar
  4. 4.
    V. M. Radhakrishnan and P. S. Baburamani:Mater. Sci. Eng., 1975, vol. 17, p. 283.CrossRefGoogle Scholar
  5. 5.
    C. E. Feddersen: ASTM STP, 410, p. 77, 1967.Google Scholar
  6. 6.
    A. J. McEvily, Jr. and R. C. Boettner:Acta Met., 1963, vol. 11, p. 725.CrossRefGoogle Scholar
  7. 7.
    G. A. Miller, D. H. Avery, and W. A. Backofen:Trans. TMS-AIME, 1966, vol. 236, p. 1667.Google Scholar
  8. 8.
    H. Ishii and J. Weertman:Met. Trans., 1971, vol. 2, p. 3441.Google Scholar
  9. 9.
    C. M. Wan and J. G. Byrne:Fracture 1969, P. L. Pratt, ed., p. 598, Chapman and Hall, London, 1969.Google Scholar
  10. 10.
    A. Saxena and S. D. Antolovich:Met. Trans. A, 1975, vol. 6A, p. 1975.Google Scholar
  11. 11.
    S. D. Antolovich, A. Saxena, and G. R. Chanani:Eng. Fract. Mech., 1975, vol. 7, p. 649.CrossRefGoogle Scholar
  12. 12.
    T. Yokobori:Methodologies and Fundamentals of Fracture of Matter and Solids, (in Japanese), Iwanami-Shoten, Tokyo, 1974; Russian Translated Edition, Nauka Dumka, Kiev, 1978.Google Scholar
  13. 13.
    T. Yokobori, S. Konosu, and A. T. Yokobori, Jr.:Advances in Research on the Strength and Fracture of Materials, D. M. R. Taplin, ed., vol. 1, p. 665, Pergamon Press, NY, 1978.Google Scholar
  14. 14.
    T. Yokobori, I. Kawada, and H. Hata:Rep. Res. Inst. Strength Fract. Mater., Tohoku Univ., 1973, vol. 9, p. 35.Google Scholar
  15. 15.
    T. Yokobori: ASTM Symposium on Fatigue Mechanisms, Paper 22, Kansas City, May 22–24, 1978.Google Scholar
  16. 16.
    H. Kitagawa and S. Misumi:Preprint of Japan Soc. Mech. Engrs., No. 714-10, Japan Soc. Mech. Engrs., Tokyo, 1971.Google Scholar
  17. 17.
    K. Tanaka and S. Matsuoka:Int. J. Fracture, 1977, vol. 13, p. 563.CrossRefGoogle Scholar
  18. 18.
    J. P. Hickerson, Jr. and R. W. Hertzberg:Met. Trans., 1972, vol. 3, p. 179.CrossRefGoogle Scholar
  19. 19.
    T. Yokobori:Rep. Res. Inst. Strength Fract. Mater., Tohoku Univ., 1969, vol. 5, p. 19.Google Scholar
  20. 20.
    B. Tomkins:Phil. Mag., 1968, vol. 18, p. 1041.CrossRefGoogle Scholar
  21. 21.
    R. J. Cooke and C. J. Beevers:Mater. Sci. Eng., 1974, vol. 13, p. 201.CrossRefGoogle Scholar
  22. 22.
    R. O. Ritchie:Met. Sci., 1977, vol. 11, p. 368.CrossRefGoogle Scholar
  23. 23.
    J. Barsom, E. J. Imhof, and S. T. Rolfe:Eng. Fract. Mech., 1970, vol. 2, p. 301.CrossRefGoogle Scholar
  24. 24.
    H. Kitagawa, H. Nishitani, and J. Matsumoto:Proc. 3rd Int. Congr. Fracture, vol. 6, Paper V-444/A, Munich, 1973.Google Scholar
  25. 25.
    J. Masounave and J. P. Bailon:Scr. Met., 1976, vol. 10, p. 165.CrossRefGoogle Scholar
  26. 26.
    C. J. Beevers:Met. Sci., 1977, vol. 11, p. 362.Google Scholar
  27. 27.
    J. P. Benson and D. V. Edmonds,Met. Sci., 1978, vol. 12, p. 223.CrossRefGoogle Scholar

Copyright information

© American Society for Metals and the Metallurgical Society of AIME 1979

Authors and Affiliations

  • Hitoshi Ishii
    • 1
  • Kazuhiko Yukawa
    • 2
  1. 1.Department of Mechanical EngineeringShizuoka UniversityJohoku, HamamatsuJapan
  2. 2.Matsushita Electric WorksHikoneJapan

Personalised recommendations