Skip to main content
Log in

The role of dislocation substructures in fatigue crack propagation in copper and alpha brass

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effect of dislocation substructures on fatigue crack propagation (FCP) behavior in copper and alpha brass was studied. Various dislocation substructures were obtained by prestraining in tension. Dislocation cells were formed by this prestraining in copper and 90/10 brass and when they formed the resistance to FCP at intermediate propagation rates (5×10−9 to ∼10−7 m/cycle) increased with increasing prestrain. Planar dislocation arrays were observed in 70/30 brass instead of cells, and the effect of prestraining on the FCP resistance was insignificant. From the FCP data for each material it was observed that, regardless of the difference in the dislocation substructures and grain sizes, the two constantsC andm in the Paris equation,da/dN=C(ΔK) m, were interrelated. Possible relations between the cyclic strain hardening exponent andm are discussed. The influence of both prestrain and grain size on threshold behavior was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. H. Wanhill:Eng. Fract. Mech., 1978, vol. 10, p. 337.

    Article  CAS  Google Scholar 

  2. C. Laird:Met. Trans. A, 1977, vol. 8A, p. 851.

    Article  CAS  Google Scholar 

  3. A. J. McEvily, Jr., R. C. Boettner, and A. P. Bond:J. Inst. Metals, 1964–65, vol. 93, p. 481.

    Google Scholar 

  4. V. M. Radhakrishnan and P. S. Baburamani:Mater. Sci. Eng., 1975, vol. 17, p. 283.

    Article  CAS  Google Scholar 

  5. C. E. Feddersen: ASTM STP, 410, p. 77, 1967.

    Google Scholar 

  6. A. J. McEvily, Jr. and R. C. Boettner:Acta Met., 1963, vol. 11, p. 725.

    Article  Google Scholar 

  7. G. A. Miller, D. H. Avery, and W. A. Backofen:Trans. TMS-AIME, 1966, vol. 236, p. 1667.

    CAS  Google Scholar 

  8. H. Ishii and J. Weertman:Met. Trans., 1971, vol. 2, p. 3441.

    CAS  Google Scholar 

  9. C. M. Wan and J. G. Byrne:Fracture 1969, P. L. Pratt, ed., p. 598, Chapman and Hall, London, 1969.

    Google Scholar 

  10. A. Saxena and S. D. Antolovich:Met. Trans. A, 1975, vol. 6A, p. 1975.

    Google Scholar 

  11. S. D. Antolovich, A. Saxena, and G. R. Chanani:Eng. Fract. Mech., 1975, vol. 7, p. 649.

    Article  CAS  Google Scholar 

  12. T. Yokobori:Methodologies and Fundamentals of Fracture of Matter and Solids, (in Japanese), Iwanami-Shoten, Tokyo, 1974; Russian Translated Edition, Nauka Dumka, Kiev, 1978.

    Google Scholar 

  13. T. Yokobori, S. Konosu, and A. T. Yokobori, Jr.:Advances in Research on the Strength and Fracture of Materials, D. M. R. Taplin, ed., vol. 1, p. 665, Pergamon Press, NY, 1978.

    Google Scholar 

  14. T. Yokobori, I. Kawada, and H. Hata:Rep. Res. Inst. Strength Fract. Mater., Tohoku Univ., 1973, vol. 9, p. 35.

    CAS  Google Scholar 

  15. T. Yokobori: ASTM Symposium on Fatigue Mechanisms, Paper 22, Kansas City, May 22–24, 1978.

  16. H. Kitagawa and S. Misumi:Preprint of Japan Soc. Mech. Engrs., No. 714-10, Japan Soc. Mech. Engrs., Tokyo, 1971.

    Google Scholar 

  17. K. Tanaka and S. Matsuoka:Int. J. Fracture, 1977, vol. 13, p. 563.

    Article  CAS  Google Scholar 

  18. J. P. Hickerson, Jr. and R. W. Hertzberg:Met. Trans., 1972, vol. 3, p. 179.

    Article  CAS  Google Scholar 

  19. T. Yokobori:Rep. Res. Inst. Strength Fract. Mater., Tohoku Univ., 1969, vol. 5, p. 19.

    Google Scholar 

  20. B. Tomkins:Phil. Mag., 1968, vol. 18, p. 1041.

    Article  CAS  Google Scholar 

  21. R. J. Cooke and C. J. Beevers:Mater. Sci. Eng., 1974, vol. 13, p. 201.

    Article  CAS  Google Scholar 

  22. R. O. Ritchie:Met. Sci., 1977, vol. 11, p. 368.

    Article  CAS  Google Scholar 

  23. J. Barsom, E. J. Imhof, and S. T. Rolfe:Eng. Fract. Mech., 1970, vol. 2, p. 301.

    Article  Google Scholar 

  24. H. Kitagawa, H. Nishitani, and J. Matsumoto:Proc. 3rd Int. Congr. Fracture, vol. 6, Paper V-444/A, Munich, 1973.

  25. J. Masounave and J. P. Bailon:Scr. Met., 1976, vol. 10, p. 165.

    Article  CAS  Google Scholar 

  26. C. J. Beevers:Met. Sci., 1977, vol. 11, p. 362.

    CAS  Google Scholar 

  27. J. P. Benson and D. V. Edmonds,Met. Sci., 1978, vol. 12, p. 223.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishii, H., Yukawa, K. The role of dislocation substructures in fatigue crack propagation in copper and alpha brass. Metall Trans A 10, 1881–1887 (1979). https://doi.org/10.1007/BF02811733

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02811733

Keywords

Navigation