Advertisement

Metallurgical Transactions A

, Volume 10, Issue 8, pp 997–1011 | Cite as

Grain boundary segregation and grain growth inhibition in silicon iron: The effect of boron and nitrogen

  • R. Grant Rowe
Symposium on Recovery, Recrystallization and Grain Growth in Materials

Abstract

The degree of grain growth inhibition in iron-3.1 pct silicon alloys with small additions of boron, nitrogen and sulfur has been observed to correlate strongly with the degree of nitrogen segregation to the grain boundaries. Grain growth was seen to increase monotonically with decreasing nitrogen segregation at 950°C, the temperature at which significant grain growth was first observed to occur. Boron affected the retention of nitrogen in the material at high temperatures and in this way had an indirect effect on grain growth inhibition. Sulfur acted to enhance the effectiveness of nitrogen as a grain growth inhibitor. It is suggested that nitrogen, even at very low grain boundary concentrations affects grain boundary migration by poisoning sites at the grain boundaries which are particularly efficient in attaching atoms to the growing grain surface.

Keywords

Boron Metallurgical Transaction Auger Phase Particle Boundary Migration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. E. Burke:Trans. AIME, 1949, vol. 185, p. 315.Google Scholar
  2. 2.
    J. E. May and D. Turnbull:Trans. TMS-AIME, 1958, vol. 212, p. 769.Google Scholar
  3. 3.
    C. G. Dunn and J. L., Walter:Recrystallization, Grain Growth, and Texture, p. 461, ASM, Metals Park, Ohio, 1966.Google Scholar
  4. 4.
    R. W. Cahn:Physical Metallurgy, p. 1181, North-Holland, Amsterdam, 1970.Google Scholar
  5. 5.
    P. Cotterill and P. R. Mould:Recrystallization and Grain Growth in Metals, J. Wiley and Sons, New York, 1976.Google Scholar
  6. 6.
    Boron-silicon steel will refer to iron-3 pct silicon alloys with additions of boron, nitrogen and sulfur for grain growth inhibition as described in Refs. 7 and 8.Google Scholar
  7. 7.
    H. E. Genoble: U. S. Patent No. 3,905,842, September 16, 1975.Google Scholar
  8. 8.
    H. C. Fiedler: U.S. Patent No. 3,905,843, September 16, 1975.Google Scholar
  9. 9.
    J. E. May and D. Turnbull:J. Appl. Phys., 1959, vol. 30, p. 210.CrossRefGoogle Scholar
  10. 10.
    S. Taguchi, A. Sakakura, and H. Takashima: U.S. Patent No. 3,287,183. 1966.Google Scholar
  11. 11.
    H. E. Grenobie:IEEE Trans. Magnetics, 1977, vol. 13, p. 1427.CrossRefGoogle Scholar
  12. 12.
    H. C. Fiedler:Met. Trans. A, 1977, vol. 8A, p. 1307.CrossRefGoogle Scholar
  13. 13.
    H. C. Fiedier:IEEE Trans. Magnetics, 1977, vol. 13, p. 1433.CrossRefGoogle Scholar
  14. 14.
    K. T. Aust and J. W. Rutter:Recovery and Recrystallization of Metals, L. Himmel, ed., p. 171, Interscience, New York, 1963.Google Scholar
  15. 15.
    T. Saito:Nihon Kinzoku Gakkai-Shi, 1963, vol. 27, p. 186.Google Scholar
  16. 16.
    C. J. Simpson, W. C. Winegard, and K. T. Aust:Grain Boundary Structure and Properties, G. A. Chadwick and D. A. Smith, eds., p. 201, Academic Press, London, 1976.Google Scholar
  17. 17.
    H. Gleiter and B. Chalmers: “High Angle Grain Boundaries”,Progr. Mater. Sci., vol. 16, Pergamon Press, Oxford, 1972.Google Scholar
  18. 18.
    K. Lücke and K. Detert:Acta Met., 1957, vol. 5, p. 628.CrossRefGoogle Scholar
  19. 19.
    J. W. Cahn:Acta Met., 1962, vol. 10, p. 789.CrossRefGoogle Scholar
  20. 20.
    K. Lücke and H. P. Stüwe:Recovery and Recrystallization of Metals, L. Himmel, ed., p. 171, Interscience, New York, 1963.Google Scholar
  21. 21.
    P. Gordon and R. A. Vandermeer:Recrystallization Grain Growth and Textures, p. 205, ASM, Metals Park, Ohio, 1966.Google Scholar
  22. 22.
    J. L. Walter and E. F. Koch:Acta Met., 1963, vol. 11, p. 923.CrossRefGoogle Scholar
  23. 23.
    H. Hu:Recovery and Recrystallization of Metals, L. Himmel, ed., p. 311, Interscience, New York, 1963.Google Scholar
  24. 24.
    I. L. Dillamore, P. L. Morris, C. J. E. Smith, and W. B. Hutchinson:Proc. Roy. Soc. A, 1972, vol. 329A, p. 405.CrossRefGoogle Scholar
  25. 25.
    E. Furubayashi:Trans. Iron Steel Inst. Jpn., 1969, vol. 9, p. 222.Google Scholar
  26. 26.
    M. Shinozaki, I. Matoba, T. Kan, and T. Gotoh:Trans. Jpn. Inst. Metals, 1978, vol. 19, p. 85.Google Scholar
  27. 27.
    H. C. Fiedler: Unpublished research, General Electric Co., Corporate Research and Development, Schenectady, NY, 1977.Google Scholar
  28. 28.
    Model 590 Scanning Auger Microprobe, Physical Electronics Industries, Inc., Eden Prairie, MN 55343.Google Scholar
  29. 29.
    Handbook of Auger Electron Spectroscopy, Physical Electronics Industries, Inc., Eden Prairie, MN 55343, 1976.Google Scholar
  30. 30.
    F. Pons, J. LeHericy, and J. P. Langeron:Surf. Sci., 1977, vol. 69, p. 565.CrossRefGoogle Scholar
  31. 31.
    L. Marchut and C. J. McMahon, Jr.:J. Vac. Sci. Technol., 1978, vol. 15, p. 450.CrossRefGoogle Scholar
  32. 32.
    J. M. Morabita and P. M. Hall:Scanning Electron Microsc., 1976, vol. 9, p. 221.Google Scholar
  33. 33.
    E. N. Sickafus:J. Vac. Sci. Technol., 1974, vol. 11, p. 299.CrossRefGoogle Scholar
  34. 34.
    P. Jolly and C. Goux:Comptes Rendus, 1969, vol. 268C, p. 577.Google Scholar
  35. 35.
    C. Pichard, J. Rieu, and C. Goux:Comptes Rendus, 1975, vol. 280C, p. 633.Google Scholar
  36. 36.
    C. Pichard, M. Guttmann, J. Rieu, and C. Goux.J. DePhysique, colleque C4, suppl. 10, p. 151, 1975.Google Scholar
  37. 37.
    R. G. Rowe and C. L. Briant:Proc. 13th Annual Conf. Microbeam Anal. Soc., p. 71A, June 1978.Google Scholar
  38. 38.
    D. R. Penn:J. Electron Spectrosc. Rel. Phenom., 1976, vol. 9, p. 29.CrossRefGoogle Scholar
  39. 39.
    D. McLean:Grain Boundaries in Metals, Oxford University Press, London, 1957.Google Scholar
  40. 40.
    M. P. Seah and D. Hondros:Proc. Roy. Soc. London, 1973, vol. A335, p. 191.CrossRefGoogle Scholar
  41. 41.
    M. Guttmann:Surf. Sci., 1975, vol. 53, p. 213.CrossRefGoogle Scholar
  42. 42.
    R. W. Fountain and J. Chipman:Trans. TMS-AIME, 1962, vol. 224, p. 599.Google Scholar
  43. 43.
    T. Matsuoka:Trans. Iron Steel Inst. Jpn., 1967, vol. 7, p. 19.Google Scholar
  44. 44.
    H. C. Fiedler:Met. Trans. A, 1978, vol. 9A, p. 1489.CrossRefGoogle Scholar
  45. 45.
    F. Bacon: Unpublished research, General Electric Co., Corporate Research and Development, Schenectady, NY, 1977.Google Scholar
  46. 46.
    C. Zener, as communicated by C. S. Smith:Trans. AIME, 1949, vol. 175, p. 15.Google Scholar
  47. 47.
    M. F. Ashby, J. Harper, and J. Lewis:Trans. TMS-AIME, 1969, vol. 245, p. 413.Google Scholar
  48. 48.
    P. Hellman and M. Hillert:Scand. J. Metall., 1975, vol. 4, p. 211.Google Scholar
  49. 49.
    W. M. Swift:Met. Trans., 1973, vol. 4, p. 841.CrossRefGoogle Scholar
  50. 50.
    J. W. Flowers and S. P. Karas:J. Appl. Phys., 1967, vol. 38, p. 1085.CrossRefGoogle Scholar
  51. 51.
    R. E. Fryxell, N. Galitzine, and F. S. Gardner:J. Iron Steel Inst., 1958. vol. 189, p. 327.Google Scholar
  52. 52.
    A. Brown, J. D. Garnish, and R. W. K. Honeycombe:Metals Sci., 1974, vol. 8, p. 317.CrossRefGoogle Scholar
  53. 53.
    H. C. Fiedler:Trans TMS-AIME, 1969, vol. 245, p. 941.Google Scholar
  54. 54.
    N. G. Ainslie and A. U. Seybolt:J. Iron Steel Inst., 1960, vol. 194, p. 341.Google Scholar
  55. 55.
    J. D. Fast and M. B. Verrijp:J. Iron Steel Inst., 1954, vol. 176, p. 24.Google Scholar
  56. 56.
    H. Hu and B. B. Rath:Met. Trans., 1970, vol. 1, p. 3131.Google Scholar
  57. 57.
    P. E. Busby and C. Wells:Trans. AIME, 1954, vol. 200, p. 972.Google Scholar
  58. 58.
    K. Lücke and H. P. Stüwe:Acta Met., 1971, vol. 19, p. 1087.CrossRefGoogle Scholar
  59. 59.
    R. A. Oriani:Acta Met., 1959, vol. 7, p. 62.CrossRefGoogle Scholar
  60. 60.
    W. Kossel:Nachr Ges. Wiss. Gottingen, 1927, p. 135.Google Scholar
  61. 61.
    N. Cabrera and D. A. Vermilyea:Growth and Perfection of Crystals, R. H. Doremus, B. W. Roberts, and D. Turnbull, eds., p. 393, J. Wiley and Sons, NY, 1958.Google Scholar
  62. 62.
    F. C. Frank:Growth and Perfection of Crystals, R. H. Doremus, B. W. Roberts, and D. Turnbull, eds., p. 411, J. Wiley and Sons, NY, 1958.Google Scholar
  63. 63.
    E. D. Hondros:Proc. Roy. Soc., 1965, vol. 286A, p. 479.Google Scholar
  64. 64.
    E. D. Hondros and L. E. H. Stuart:Phil. Mag., 1968, vol. 17, p. 711.CrossRefGoogle Scholar
  65. 65.
    R. G. Rowe, C. L. Briant, and F. Bacon:Proc. 8th Int. Conf. on X-Ray Optics and Microanalysis, 1977, in press.Google Scholar
  66. 66.
    W. C. Johnson and H. B. Smartt:Met. Trans. A, 1977, vol. 8A, p. 553.CrossRefGoogle Scholar
  67. 67.
    W. Roberts, P. Grieveson, and K. H. Jack:Proc. Int. Symp. Metall. Chem.-Appl. Ferrous Metall., p. 384, Iron and Steel Inst., London, 1973.Google Scholar
  68. 68.
    K. Nakanishi, Y. Sakamoto, K. Tsuruoka, and M. Imai:Acta Met., 1972, vol. 20, p. 669.CrossRefGoogle Scholar

Copyright information

© American Society for Metals and the Metallurgical Society of AIME 1979

Authors and Affiliations

  • R. Grant Rowe
    • 1
  1. 1.Properties BranchGeneral Electri Corporate Research and DevelopmentSchenectady

Personalised recommendations