Skip to main content
Log in

Biotechnology and biosynthesis of quinones

  • Reviews
  • Published:
Pharmaceutisch Weekblad Aims and scope Submit manuscript

Abstract

Nowadays, it is generally agreed that intensive investigation of biosynthetic pathways is a prerequisite for attaining industrial-scale production of secondary metabolites (e.g. quinones) by plant cell cultures. Literature data are presented to illustrate different aspects of today's quinone biosynthesis research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomson RH. Naturally occurring quinones. III. London: Chapman and Hall, 1987.

    Google Scholar 

  2. Van den Berg AJJ, Labadie RP. Quinones. In: Dey PM, Harborne JB, eds. Methods in plant biochemistry. Vol. 1. London: Academic Press, 1989:451–91.

    Google Scholar 

  3. Kitanaka S, Igarashi H, Takido M. Formation of pigments by the tissue culture ofCassia occidentalis. Chem Pharm Bull 1985;33:971–4.

    Google Scholar 

  4. Inouye H, Matsumura H, Kawasaki M, Inoue K, Tsukada M, Tabata M. Two quinones from callus cultures ofEchium lycopsis. Phytochemistry 1981;20:1701–5.

    Article  Google Scholar 

  5. Yazaki K, Fukui H, Tabata M. Dihydroshikonofuran, an unusual metabolite of quinone biosynthesis inLithospermum cell cultures. Chem Pharm Bull 1987;35:898–901.

    Google Scholar 

  6. Curtin ME. Harvesting profitable products from plant tissue culture. Biotechnology 1983;1:649–57.

    Article  Google Scholar 

  7. Stöckigt J, Schübel H. Naturstoffe aus pflanzlichen Zellkulturen. Dtsch Apoth Ztg 1989;129:1187–92.

    Google Scholar 

  8. Khouri HE, Ibrahim RK. Purification and some properties of five anthraquinone-specific glucosyl-transferases fromCinchona succirubra cell suspension culture. Phytochemistry 1987;26:2531–5.

    Article  Google Scholar 

  9. Mann J. Secondary metabolism. Oxford: Oxford University Press, 1978:1–77.

    Google Scholar 

  10. Vickery ML, Vickery B. Secondary plant metabolism. London: MacMillan Press, 1981:56–111.

    Google Scholar 

  11. Van den Berg AJJ, Radema MH, Labadie RP. Effects of light on anthraquinone production inRhamnus purshiana suspension cultures. Phytochemistry 1988;27:415–7.

    Article  Google Scholar 

  12. Häggblom P. Light effects on polyketide and lipid metabolism inAlternaria alternata. Int Bot Congr Abstr 1987;17:174.

    Google Scholar 

  13. Mosbach K, Bävertoft I. A comparative study on the biosynthesis of palmitic and orsellinic acids inPenicillium baarnense. Acta Chem Scand 1971;25:1931–6.

    PubMed  Google Scholar 

  14. Orvehed M, Häggblom P, Söderhäll K. Activity of NADPH-generating pathways in relation to polyketide synthesis in the fungusAlternaria alternata. Exp Mycol 1987;11:187–96.

    Google Scholar 

  15. Gstraunthaler GJA. The effect of cerulenin on fatty acid and anthraquinone biosynthesis in vegetative mycelia ofCortinarius orichalceus Fr. Biochim Biophys Acta 1983;750:424–7.

    Google Scholar 

  16. Omura S. Philosophy of new drug discovery. Microbiol Rev 1986;50:259–79.

    PubMed  Google Scholar 

  17. Dusek J, Sicha J, Duskova J. Influence on the production of anthracene derivatives in the tissue culture ofRheum palmatum by a modification of the cultivating medium, or potential precursors. Cesk Farm 1989;38:210–3.

    Google Scholar 

  18. Van den Berg AJJ, Radema MH, Labadie RP. Influence of acetate and malonate on the production of 1,8-dihydroxyanthracene derivatives in suspension cultures ofRhamnus purshiana. Planta 1988;174:417–21.

    Article  Google Scholar 

  19. Yagi A, Shoyama Y, Nishioka I. Formation of tetrahydroanthracene glucosides by callus tissue ofAloe saponaria. Phytochemistry 1983;22:1483–4.

    Article  Google Scholar 

  20. Grün M, Franz G.In vitro biosynthesis of the C-glycosidic bond in aloin. Planta 1981;152:562–4.

    Article  Google Scholar 

  21. Grün M, Franz G. Untersuchungen zur Biosynthese der Aloine inAloe arborescens Mill. Arch Pharm 1982;315:231–41.

    Google Scholar 

  22. Simantiras M, Leistner E. Formation ofo-succinylbenzoic acid from iso-chorismic acid in protein extracts from anthraquinone-producing plant cell suspension cultures. Phytochemistry 1989;28:1381–2.

    Article  Google Scholar 

  23. Inouye H, Ueda S, Inoue K, Shiobara Y. (2R)-Catalponone, a biosynthetic intermediate for prenylnaphthoquinone congeners of the wood ofCatalpa ovata. Phytochemistry 1981;20:1707–10.

    Article  Google Scholar 

  24. Inoue K, Ueda S, Nayeshiro H, Inouye H. Quinones fromStreptocarpus dunnii. Phytochemistry 1983;22:737–41.

    Article  Google Scholar 

  25. Inoue K, Ueda S, Nayeshiro H, Moritome N, Inouye H. Biosynthesis of naphthoquinones and anthraquinones inStreptocarpus dunnii cell cultures. Phytochemistry 1984;23:313–8.

    Google Scholar 

  26. Mulder-Krieger Th, Verpoorte R, De Water A, Van Gessel M, Van Oeveren BCJA, Baerheim Svendsen A. Identification of the alkaloids and anthraquinones inCinchona ledgeriana callus cultures. Planta Med 1982;46:19–24.

    Google Scholar 

  27. Wijnsma R, Van Weerden IN, Verpoorte R, et al. Anthraquinones inCinchona ledgeriana bark infected withPhytophthora cinnamomi. Planta Med 1986;52:211–2.

    Google Scholar 

  28. Wijnsma R, Go JTKA, Van Weerden IN, Harkes PAA, Verpoorte R, Baerheim Svendsen A. Anthraquinones as phytoalexins in cell and tissue cultures ofCinchona spec. Plant Cell Rep 1985;4:241–4.

    Article  Google Scholar 

  29. Igbavboa U, Sieweke HJ, Leistner E, Röwer I, Hüsemann W, Barz W. Alternative formation of anthraquinones and lipoquinones in heterotrophic and photoautotrophic cell suspension cultures ofMorinda lucida Benth. Planta 1985;166:537–44.

    Article  Google Scholar 

  30. El-Shagi H, Shulte U, Zenk MH. Specific inhibition of anthraquinone formation by amino compounds inMorinda cell cultures. Naturwissenschaften 1984;71:267.

    Article  Google Scholar 

  31. Inouye H, Ueda S, Inoue K, Matsumura H. Biosynthesis of shikonin in callus cultures ofLithospermum erythrorhizon. Phytochemistry 1979;18:1301–8.

    Article  Google Scholar 

  32. Fukui H, Tsukada M, Mizukami H, Tabata M. Formation of stereoisomeric mixtures of naphthoquinone derivatives inEchium lycopsis callus cultures. Phytochemistry 1983;22:453–6.

    Article  Google Scholar 

  33. Fukui H, Yoshikawa N, Tabata M. Induction of benzoquinone formation by activated carbon inLithospermum erythrorhizon cell suspension cultures. Phytochemistry 1984;23:301–5.

    Article  Google Scholar 

  34. Heide L, Nishioka N, Fukui H, Tabata M. Enzymatic regulation of shikonin biosynthesis inLithospermum erythrorhizon cell cultures. Phytochemistry 1989;28:1873–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Based on a lecture given at the 16th LOF Symposium, 27 October 1989, Utrecht, the Netherlands.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van den Berg, A.J.J. Biotechnology and biosynthesis of quinones. Pharmaceutisch Weekblad Scientific Edition 13, 74–77 (1991). https://doi.org/10.1007/BF01974984

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01974984

Keywords

Navigation