Skip to main content

Advertisement

Log in

Soil Fauna of Peat-Forming Wetlands in a Natural River Floodplain

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

We assessed the response of soil fauna to natural environmental gradients triggered by different dynamics of hydrological conditions. Four sites differing in the dynamics of groundwater-surface water interactions, type of soil and type of wetland vegetation were selected along a transect running from a river channel to the margin of the valley in the floodplain. Soil macrofauna, represented by millipedes, terrestrial isopods and earthworms, and soil mesofauna (collembolans) were investigated along that transect. Our results demonstrate that soil macrofauna and mesofauna variability differ across examined peat-forming wetlands. The effect of hydrological conditions associated with flooding emerged as a significant predictor of the variability in soil macrofauna with regard to millipedes and terrestrial isopods, but not earthworms. We concluded that the interactive processes reflected in the landscape mosaic, complex spatio-temporal environmental gradients and biogeochemical factors determine the distribution of soil macro and mesofauna within peat-filled river floodplains, although soil fauna components differ in the response across the examined sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson JM (2009) Why should we care about soil fauna. Pesquisa Agropecuária Brasileira 44:835–842

    Article  Google Scholar 

  • Anibas C, Verbeiren B, Buis K, Chormański J, De Doncker L, Okruszko T, Meire P, Batelaan O (2012) A hierarchical approach on groundwater-surface interaction in wetlands along the upper Biebrza River, Poland. Hydrology and Earth System Sciences 16:2329–2346

    Article  Google Scholar 

  • Bardgett RD, Yates GW, Andreson JM (2005) Patterns and determinants of soil biological diversity. In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge, pp 100–118

    Chapter  Google Scholar 

  • Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecological Economics 64:269–285

    Article  Google Scholar 

  • Bastian O (2013) The role of biodiversity in supporting ecosystem services in Natura 2000 sites. Ecological Indicators 24:12–22

    Article  Google Scholar 

  • Berg M (2012) Patterns of biodiversity at fine and small spatial scales. In: Wall DH, Bardgett RD, Behan-Pelletier V, Herrick JE, Jones TH, Ritz K, Six J, Strong DR, Van der Putten WH (eds) Soil ecology and ecosystems services. Oxford University Press, Oxford, pp 136–152

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Briones MJI (2014) Soil fauna and soil functions: a jigsaw puzzle. Fronttiers in Environmental Science 2:7. doi: 10.3389/fenvs.2014.00007

  • Burt TP, Pinay G (2005) Linking hydrology and biogeochemistry in complex landscapes. Progress in Physical Geography 29:297–316

    Article  Google Scholar 

  • Chormański J, Okruszko T, Ignar S, Batelaan O, Rebel KT, Wassen MJ (2011) Flood mapping with remote sensing and hydrochemistry: a new method to distinguish the origin of flood water during floods. Ecological Engineering 37:1334–1349

    Article  Google Scholar 

  • Chust G, Pretus JL, Ducrot D, Bedos A, Deharveng L (2001) Response of soil fauna to landscape heterogeneity: determining optimal scales for biodiversity modelling. Conservation Biology 17:1712–1723

    Article  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    Article  CAS  PubMed  Google Scholar 

  • Danielson BJ (1991) Communities in a landscape: the influence of habitat heterogeneity on the interaction between species. The American Naturalist 138:1105–1120

    Article  Google Scholar 

  • Davis AC, Austin JE, Buhl DA (2006) Factors influencing soil invertebrate communities in riparian grasslands of the central plate river floodplain. Wetlands 26:438–454

    Article  Google Scholar 

  • De Deyn GB, Raaijmakers CE, Zoomer HR, Berg MP, De Ruiter PC, Verhoef HA, Bezemer TM, Van der Putten WH (2003) Soil invertebrate fauna enhances grassland succession and diversity. Nature 422:711–713

    Article  PubMed  Google Scholar 

  • Decaëns T (2010) Macroecological patterns in soil communities. Global Ecology and Biogeography 19:287–302

    Article  Google Scholar 

  • El Kahloun M, Gerrard M, Meire P (2005) Phosphorous and nitrogen cycling in fen vegetation along different trophic conditions in the Biebrza valley, Poland. Ecohydrology and Hydrobiology 5:67–78

    Google Scholar 

  • Fox JW (2013) The intermediate disturbance hypothesis should be abandoned. Trends in Ecology and Evolution 28:86–92

    Article  PubMed  Google Scholar 

  • Gnatowski T, Sztayłowicz J, Brandyk T, Kechavarzi C (2010) Hydraulic properties of fen peat soils in Poland. Geoderma 154:188–195

    Article  Google Scholar 

  • Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature 242:344–347

    Article  Google Scholar 

  • Grygoruk M, Sienkiewicz J, Hattermann F, Stagi J (2013) Climate-Adapted Management Plan (CAMP) for Biebrza National Park. HABIT-CHANGE

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, New York

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. (http://www.worldclim.org/bioclim)

  • Huston M (1979) A general hypothesis of species diversity. The American Naturalist 113:81–101

    Article  Google Scholar 

  • Huston MA (1994) Biological diversity. The coexistence of species on changing landscapes. Cambridge University Press, Cambridge

    Google Scholar 

  • Huston MA, DeAngelis DL (1994) Competition and coexistence - the effects of resource transport and supply rates. The American Naturalist 144:954–977

    Article  Google Scholar 

  • Ilnicki P, Zeitz J (2003) Irreversible loss of organic soil functionms after reclamation. In: Parent L-E, Ilnicki P (eds) Organic soils and peat materials for sustainable agriculture. CRC Press, Boca Raton

    Google Scholar 

  • IUSS Working Group WRB (2014) World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106, FAO, Rome

  • Junk WJ (2005) Flood pulsing and the linkages between terrestrial, aquatic, and wetland systems. International Association of Theoretical and Applied Limnology 29:11–38

    Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106:110–127

    Google Scholar 

  • Keizer FM, Schot PP, Okruszko T, Chormański J, Kardel I, Wassen MJ (2014) A new look at the flood pulse concept: the (ir)relevance of the moving littoral in temperate zone rivers. Ecological Engineering 64:85–99

    Article  Google Scholar 

  • Kotowski W, Piórkowski H (2005) Competition and succession affecting vegetation structure in riparian environments: implication for nature management. Ecohydrology and Hydrobiology 5:52–57

    Google Scholar 

  • Králová M, Dražak K, Pospíšil F, Hadačová V, KlozováE LJ, Kutáček M, Sahulka J (1991) Vybrané metody chemické analýzy půd a rostlin [Selected methods of chemical analyses of soil and plants]. Academia, Prague [in Czech]

    Google Scholar 

  • Kubíková J (1970) Geobotanické praktikum [Practicum of geobotany]. Charles University, Prague [in Czech]

    Google Scholar 

  • Laiho R, Silvan N, Cárcamo H, Vasander H (2001) Effects of water level and nutrients on spatial distribution of soil meso-invertebrates in peatlands drained for forestry in Finland. Applied Soil Ecology 16:1–9

    Article  Google Scholar 

  • Lavelle P (1996) Diversity of soil fauna and ecosystem function. Biology International 33:3–16

    Google Scholar 

  • Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Biology 33:159–193

    CAS  Google Scholar 

  • Lavelle P, Decaëns T, Aubert A, Barot S, Blouin M, Bureau F, Margerie P, Mora P, Rossi J-P (2006) Soil invertebrates and ecosystem services. European Journal of Soil Biology 42:3–15

    Article  Google Scholar 

  • Leibold MA, Holyak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzales A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7:601–613

    Article  Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lytle DA, Poff NL (2004) Adaptation to natural flow regimes. Trends in Ecology and Evolution 19:94–100

    Article  PubMed  Google Scholar 

  • Macháček V (1986) Ověření nové metody ke stanovení rychlosti uvolňováni fosforu z půdy [Verification of a new method for assessment of phosphorus release from soil]. Rostliná výroba 32:473–480 [in Czech]

    Google Scholar 

  • Marx MT, Wild A-K, Knollmann U, Kamp G, Wegener G, Eisenbeis G (2009) Responses and adaptations of collembolan communities (Hexapoda: Collembola) to flooding and hypoxic conditions. Pesquisa Agropecuária Brasileira 44:1002–1010

    Article  Google Scholar 

  • Marx MT, Guhmann P, Decker P (2012) Adaptations and predispositions of different middle European arthropod taxa (Collembola, Araneae, Chilopoda, Diplopoda) to flooding and drought conditions. Animals 2:564–590

    Article  Google Scholar 

  • Menta C (2012) Soil fauna diversity - function, soil degradation, biological indices, soil restoration. In: Lameed GA (ed) Biodiversity conservation and utilization in a diverse world, InTech. doi: 10.5772/51091

  • Mouillot D, Villéger S, Schere-Lorenzen M, Mason NWH (2011) Functional structure of biological communities predicts ecosystem multifunctionality. PLoS ONE 6:e17476. doi:10.1371/journal.pone.0017476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR (2013) A functional approach reveals community responses to disturbances. Trends in Ecology and Evolution 27:167–177

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nedoma J (1990) Práce s iontově selektivními elektrodami [The work with selective ionic electrodes]. Rostliná výroba 36:667–670 [in Czech]

    Google Scholar 

  • Okruszko H, Ilnicki P (2003) The moorsh horizons as quality indicators of reclaimed organic soils. In: Parent L-E, Ilnicki P (eds) Organic soils and peat materials for sustainable agriculture. CRC Press, Boca Raton

    Google Scholar 

  • Pętal J (1993) Peat grassland ecosystems. II. Biocenotic system. Polish Ecological Studies 17:1–358

    Google Scholar 

  • Pickett STA, White PS (1985) The ecology of natural disturbance and patch dynamics. Academy press, London

    Google Scholar 

  • Pižl V (1999) Earthworm communities in hardwood floodplain forests of the Morava and Dyje rivers as influenced by different inundation regimes. Ekológia (Bratislava) 18(1):199–206

    Google Scholar 

  • Platteeuw M, Pieterse N (2005) Why we need to know more about the relationship between flood regimes and the responses of nature and natural process. Ecohydrology and Hydrobiology 5:8–14

    Google Scholar 

  • Plum N (2005) Terrestrial invertebrates in flooded grassland: a literature review. Wetlands 25:721–737

    Article  Google Scholar 

  • Plum NM, Filser J (2005) Floods and drought: response of earthworms and potworms (Oligochaeta: Lumbricidae, Enchytraeidae) to hydrological extremes in wet grassland. Pedobiologia 49:443–453

    Article  Google Scholar 

  • Robinson CT, Tockner K, Ward JV (2002) The fauna of dynamic riverine landscapes. Freshwater Biology 47:661–677

    Article  Google Scholar 

  • Rothenbücher J, Schaefer M (2006) Submersion tolerance in floodplain arthropod. Basic and Applied Ecology 7:398–408

    Article  Google Scholar 

  • Ruf A, Beck L, Dreher P, Hund-Rinke K, Römbke J, Spelda J (2003) A biological classification concept for the assessment of soil quality: “biological soil classification scheme” (BBSK) agriculture. Ecosystem and Environment 98:263–271

    Article  Google Scholar 

  • Russell DJ, Griegel A (2006) Influence of variable inundation regimes on soil collembola. Pedobiologia 50:165–175

    Article  Google Scholar 

  • Scheu S, Falca M (2000) The soil food web of two beech forests (Fagus silvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community. Oecologia 123:285–28

    Article  Google Scholar 

  • Schmidt AM, Piórkowski H, Bartoszuk H (2000) Remote sensing techniques and geographic information systems for wetland conservation and management: monitoring scrub encroachment in Biebrza National Park. Alterra-rapport 174. Green World Research, Alterra, Wageningen

    Google Scholar 

  • Sheil D, Burslem DFRP (2013) Defining and defending Connell’s intermediate disturbance hypothesis: a response to Fox. Trends in Ecology and Evolution 28:571–572

    Article  PubMed  Google Scholar 

  • Sommers LE, Nelson DW (1972) Determination of total phosphorus in soils: a rapid perchloric acid digestion procedure. Soil Science Society of America Proceedings 36:902–904

    Article  CAS  Google Scholar 

  • Steiger J, Tabacchi E, Dufour S, Corenblit D, Peiry J-L (2005) Hydromorphic processes affecting riparian habitat within channel-floodplain river system: a review for the temperate zone. River Research and Application 21:719–737

    Article  Google Scholar 

  • Sterzyńska M (2009) Assemblages of soil Collembola in wetlands in the floodplains of some Polish rivers. Museum and Institute of Zoology PAS, Warszawa

    Google Scholar 

  • Svensson JR, Lindegarth M, Jonsson PR, Pavia H (2012) Disturbance-diversity models: what do they really predict and how are they tested. Proceedings of the Royal Society B: Biological Sciences 279:2163–2170

    Article  PubMed Central  PubMed  Google Scholar 

  • Tajovský K (1999) Impact of inundation on terrestrial arthropod assemblages in Southern Moravian floodplain forests, the Czech Republic. Ekológia (Bratislava) 18:177–184

    Google Scholar 

  • ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 57:255–289

    Article  Google Scholar 

  • Thuiller W, Műnkeműller T, Lavergne S, Mouillot D, Mouquet N, Schiffers K, Gravel D (2013) A road map for integrating eco-evolutionary processes into biodiversity models. Ecology Letters 16:94–105

    Article  PubMed Central  PubMed  Google Scholar 

  • Tockner K, Stanford JA (2002) Riverine floodplains: present state and future trends. Environmental Conservation 29:308–330

    Article  Google Scholar 

  • Tockner K, Malard F, Ward JV (2000) An extension of the flood pulse concept. Hydrological Processes 14:2861–2883

    Article  Google Scholar 

  • Tockner K, Bunn SE, Gordon C, Naiman RJ, Quinn GP, Stanford JA (2008) Flood plains: critically threatened ecosystems. In: Polunin NVC (ed) Aquatic ecosystems: trends and global prospects. Cambridge University Press, Cambridge, pp 45–61

    Chapter  Google Scholar 

  • Tuf IH, Dědek P, Jandová Š, Tvardík D (2008) Length of recovery of soil macro-invertebrates communities (Coleoptera: Carabidae, Isopoda: Oniscidea) after an irregular summer flood. Peckiana 5:65–75

    Google Scholar 

  • Turner MG, Gardner RH, O’Neill R (2001) Landscape ecology in theory and practice: pattern and process. Springer, New York

    Google Scholar 

  • Urban MC (2004) Disturbance heterogeneity determines freshwater metacommunity structure. Ecology 85:2971–2978

    Article  Google Scholar 

  • Vasconcellos RLF, Segat JC, Bonfim JA, Baretta D (2013) Soil macrofauna as indicator of soil quality in an undisturbed riparian forest and recovering sites of different ages. European Journal of Soil Biology 58:105–112

    Article  Google Scholar 

  • Ward JV (1998) Riverine landscapes: biodiversity patterns, disturbance regimes, and aquatic conservation. Biological Conservation 83:269–278

    Article  Google Scholar 

  • Ward JV, Tockner K (2001) Biodiversity: towards a unifying theme for river ecology. Freshwater Biology 46:807–819

    Article  Google Scholar 

  • Ward JV, Tockner R, Arscott DB, Claret C (2002) Riverine landscape diversity. Freshwater Biology 47:517–539

    Article  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems – linking the aboveground and belowground components. Princetown University Press, Princetown

    Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Van der Putten WH, Wall DH (2004) Ecological linkeages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Wassen MJ (2005) The use of reference areas in the conservation and restoration of riverine wetlands. Ecohydrology and Hydrobiology 5:41–49

    Google Scholar 

  • Wassen MJ, Peeters WHM, Venterink HO (2002) Patterns in vegetation, hydrology, and nutrient variability in an undisturbed river floodplain in Poland. Plant Ecology 165:27–43

    Article  Google Scholar 

  • Wassen MJ, Okruszko T, Kardel I, Chormański J, Świątek D, Mioduszewski W, Bleuten W, Querner E, El Kahloun M, Batelaan O, Meire P (2006) Eco-hydrological functioning of Biebrza wetlands: lessons for the conservation and restoration of deteriorated wetlands. Ecological Studies 191:285–310

    Article  Google Scholar 

  • Watanabe FS, Olsen SR (1965) Test of an ascorbic acid method for determining P in water and sodium bicarbonate extracts from soil. Soil Science Society of America Proceedings 29:677–678

    Article  CAS  Google Scholar 

  • Whittaker RH (1970) Communities and ecosystems. Macmilian Publishing, New York

    Google Scholar 

  • Xu G-L, Kuster TM, Gűnthardt-Goerg MS, Dobbertin M, Li M-H (2012) Seasonal exposure to drought and air warming affects soil Collembola and mites. PLoS ONE 7(8):e43102. doi:10.1371/journal.pone.0043102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zerm M (1999) Vorkommen und verteilung von Tausendfüßern und Zwegfüßern (Myriapoda: Diplopoda, Chilopoda, Symphyla) und Landasseln (Isopoda: Oniscidea) in den Auen des Unteren Odertals. In: Dohle W, Bornkam R, Weigman G (eds) Das Untere Odertal. Limnologie Aktuell 9, Schweizebart, Stuttgart, pp 195–197

Download references

Acknowledgments

The study was realised within the joint research project of the Museum and Institute of Zoology, Polish Academy of Sciences and the Institute of Soil Biology, Biology Centre, Czech Academy of Sciences. The authors thank the Biebrza National Park Administration for the logistic help during the field work. Mariusz Górnicz and Thomas Cooper kindly corrected the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Sterzyńska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sterzyńska, M., Pižl, V., Tajovský, K. et al. Soil Fauna of Peat-Forming Wetlands in a Natural River Floodplain. Wetlands 35, 815–829 (2015). https://doi.org/10.1007/s13157-015-0672-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-015-0672-0

Keywords

Navigation