Skip to main content

Advertisement

Log in

High-sensitivity neuroimaging biomarkers for the identification of amnestic mild cognitive impairment based on resting-state fMRI and a triple network model

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Many functional magnetic resonance imaging (fMRI) studies have indicated that Granger causality analysis (GCA) is a suitable method for revealing causal effects between brain regions. The purpose of the present study was to identify neuroimaging biomarkers with a high sensitivity to amnestic mild cognitive impairment (aMCI). The resting-state fMRI data of 30 patients with Alzheimer’s disease (AD), 14 patients with aMCI, and 18 healthy controls (HC) were evaluated using GCA. This study focused on the “triple networks” concept, a recently proposed higher-order functioning-related brain network model that includes the default-mode network (DMN), salience network (SN), and executive control network (ECN). As expected, GCA techniques were able to reveal differences in connectivity in the three core networks among the three patient groups. The fMRI data were pre-processed using DPARSFA v2.3 and REST v1.8. Voxel-wise GCA was performed using the REST-GCA in the REST toolbox. The directed (excitatory and inhibitory) connectivity obtained from GCA could differentiate among the AD, aMCI and HC groups. This result suggests that analysing the directed connectivity of inter-hemisphere connections represents a sensitive method for revealing connectivity changes observed in patients with aMCI. Specifically, inhibitory within-DMN connectivity from the posterior cingulate cortex (PCC) to the hippocampal formation and from the thalamus to the PCC as well as excitatory within-SN connectivity from the dorsal anterior cingulate cortex (dACC) to the striatum, from the ECN to the DMN, and from the SN to the ECN demonstrated that changes in connectivity likely reflect compensatory effects in aMCI. These findings suggest that changes observed in the triple networks may be used as sensitive neuroimaging biomarkers for the early detection of aMCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACC:

Anterior cingulate cortex

AD:

Alzheimer’s disease

ALFF:

Amplitude of low-frequency fluctuations

aMCI:

Amnestic mild cognitive impairment

ANCOVA:

One-way analysis of covariance

ANOVA:

One-way analysis of variance

BOLD:

Blood oxygenation level-dependent

dACC:

Dorsal anterior cingulate cortex

dlPFC:

Dorsolateral prefrontal cortex

DMN:

Default-mode network

ECN:

Executive control network

EPI:

Echo-planar imaging

FC:

Functional connectivity

fMRI:

Functional magnetic resonance imaging

FOV:

Field of view

GCA:

Granger causality analysis

HC:

Healthy controls

IPC:

Inferior parietal cortex

ITC:

Inferior temporal cortex

MMSE:

Mini mental state evaluation

MoCA:

Montreal cognitive scale

MPFC:

Medial prefrontal cortex

MPRAGE:

Magnetization-prepared rapid gradient echo

PCC:

Cingulate cortex

PCC:

Posterior cingulate cortex

PPC:

Lateral posterior parietal cortex

ROI:

Region of interest

SN:

Salience network

TE:

Echo time

TR:

Repetition time

References

  • Andreasen, J. T., & Redrobe, J. P. (2009). Nicotine, but not mecamylamine, enhances antidepressant-like effects of citalopram and reboxetine in the mouse forced swim and tail suspension tests. Behavioural Brain Research, 197(1), 150–156. doi:10.1016/j.bbr.2008.08.016.

    Article  CAS  PubMed  Google Scholar 

  • Bai, F., Zhang, Z., Yu, H., Shi, Y., Yuan, Y., Zhu, W., et al. (2008). Default-mode network activity distinguishes amnestic type mild cognitive impairment from healthy aging: a combined structural and resting-state functional MRI study. Neuroscience Letters, 438(1), 111–115. doi:10.1016/j.neulet.2008.04.021.

    Article  CAS  PubMed  Google Scholar 

  • Beaty, R. E., Benedek, M., Barry Kaufman, S., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964. doi:10.1038/srep10964.

    Article  PubMed  PubMed Central  Google Scholar 

  • Binnewijzend, M. A., Schoonheim, M. M., Sanz-Arigita, E., Wink, A. M., van der Flier, W. M., Tolboom, N., et al. (2012). Resting-state fMRI changes in Alzheimer's disease and mild cognitive impairment. Neurobiology of Aging, 33(9), 2018–2028. doi:10.1016/j.neurobiolaging.2011.07.003.

    Article  PubMed  Google Scholar 

  • Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8(12), 539–546. doi:10.1016/j.tics.2004.10.003.

    Article  PubMed  Google Scholar 

  • Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: emerging methods and principles. Trends in Cognitive Sciences, 14(6), 277–290.

    Article  Google Scholar 

  • Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38. doi:10.1196/annals.1440.011.

    Article  PubMed  Google Scholar 

  • De Luca, M., Beckmann, C. F., De Stefano, N., Matthews, P. M., & Smith, S. M. (2006). fMRI resting state networks define distinct modes of long-distance interactions in the human brain. NeuroImage, 29(4), 1359–1367. doi:10.1016/j.neuroimage.2005.08.035.

    Article  CAS  PubMed  Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.

    Article  CAS  Google Scholar 

  • Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678. doi:10.1073/pnas.0504136102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganguli, M., Snitz, B. E., Saxton, J. A., Chang, C. C., Lee, C. W., Vander Bilt, J., et al. (2011). Outcomes of mild cognitive impairment by definition: a population study. Archives of Neurology, 68(6), 761–767. doi:10.1001/archneurol.2011.101.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gasquoine, P. G. (2014). Contributions of the insula to cognition and emotion. Neuropsychology Review, 24(2), 77–87. doi:10.1007/s11065-014-9246-9.

    Article  PubMed  Google Scholar 

  • Gilbert, S. J., Dumontheil, I., Simons, J. S., Frith, C. D., & Burgess, P. W. (2007). Comment on "wandering minds: the default network and stimulus-independent thought". Science, 317(5834), 43. doi:10.1126/science.1140801.

    Article  CAS  PubMed  Google Scholar 

  • Greicius, M. D., & Menon, V. (2004). Default-mode activity during a passive sensory task: Uncoupled from deactivation but impacting activation. Journal of Cognitive Neuroscience, 16(9), 1484–1492. doi:10.1162/0898929042568532.

    Article  PubMed  Google Scholar 

  • Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258. doi:10.1073/pnas.0135058100.

    Article  CAS  PubMed  Google Scholar 

  • Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: Functional imaging and the resting human brain. Nature Reviews: Neuroscience, 2(10), 685–694. doi:10.1038/35094500.

    Article  CAS  PubMed  Google Scholar 

  • Habas, C., Kamdar, N., Nguyen, D., Prater, K., Beckmann, C. F., Menon, V., et al. (2009). Distinct cerebellar contributions to intrinsic connectivity networks. Journal of Neuroscience, 29(26), 8586–8594. doi:10.1523/JNEUROSCI.1868-09.2009.

    Article  CAS  PubMed  Google Scholar 

  • Hedden, T., Van Dijk, K. R., Becker, J. A., Mehta, A., Sperling, R. A., Johnson, K. A., et al. (2009). Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. Journal of Neuroscience, 29(40), 12686–12694. doi:10.1523/JNEUROSCI.3189-09.2009.

    Article  CAS  PubMed  Google Scholar 

  • Honey, C. J., Kotter, R., Breakspear, M., & Sporns, O. (2007). Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10240–10245. doi:10.1073/pnas.0701519104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in Cognitive Sciences, 11(6), 229–235. doi:10.1016/j.tics.2007.04.005.

    Article  PubMed  Google Scholar 

  • Li, S. J., Li, Z., Wu, G., Zhang, M. J., Franczak, M., & Antuono, P. G. (2002). Alzheimer disease: evaluation of a functional MR imaging index as a marker. Radiology, 225(1), 253–259. doi:10.1148/radiol.2251011301.

    Article  PubMed  Google Scholar 

  • McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack Jr., C. R., Kawas, C. H., et al. (2011). The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers & Dementia, 7(3), 263–269. doi:10.1016/j.jalz.2011.03.005.

    Article  Google Scholar 

  • Menon, V. (2011). Large-scale brain networks and psychopathology: a unifying triple network model. Trends in Cognitive Sciences, 15(10), 483–506. doi:10.1016/j.tics.2011.08.003.

    Article  PubMed  Google Scholar 

  • Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: a network model of insula function. Brain Structure & Function, 214(5–6), 655–667. doi:10.1007/s00429-010-0262-0.

    Article  Google Scholar 

  • Miao, X., Wu, X., Li, R., Chen, K., & Yao, L. (2011). Altered connectivity pattern of hubs in default-mode network with Alzheimer's disease: an Granger causality modeling approach. PloS One, 6(10), e25546. doi:10.1371/journal.pone.0025546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell, J. P., Macrae, C. N., & Banaji, M. R. (2006). Dissociable medial prefrontal contributions to judgments of similar and dissimilar others. Neuron, 50(4), 655–663. doi:10.1016/j.neuron.2006.03.040.

    Article  CAS  PubMed  Google Scholar 

  • Morris, J. C., Storandt, M., Miller, J. P., McKeel, D. W., Price, J. L., Rubin, E. H., et al. (2001). Mild cognitive impairment represents early-stage Alzheimer disease. Archives of Neurology, 58(3), 397–405.

    Article  CAS  Google Scholar 

  • Muller, N. G., & Knight, R. T. (2006). The functional neuroanatomy of working memory: contributions of human brain lesion studies. Neuroscience, 139(1), 51–58. doi:10.1016/j.neuroscience.2005.09.018.

    Article  CAS  PubMed  Google Scholar 

  • Orgeta, V., Qazi, A., Spector, A., & Orrell, M. (2015). Psychological treatments for depression and anxiety in dementia and mild cognitive impairment: systematic review and meta-analysis. British Journal of Psychiatry, 207(4), 293–298. doi:10.1192/bjp.bp.114.148130.

    Article  PubMed  Google Scholar 

  • Petersen, R. C., Thomas, R. G., Grundman, M., Bennett, D., Doody, R., Ferris, S., et al. (2005). Vitamin E and donepezil for the treatment of mild cognitive impairment. New England Journal of Medicine, 352(23), 2379–2388. doi:10.1056/NEJMoa050151.

    Article  CAS  PubMed  Google Scholar 

  • Rivas-Vazquez, R. A., Mendez, C., Rey, G. J., & Carrazana, E. J. (2004). Mild cognitive impairment: new neuropsychological and pharmacological target. Archives of Clinical Neuropsychology, 19(1), 11–27.

    Article  Google Scholar 

  • Schwindt, G. C., & Black, S. E. (2009). Functional imaging studies of episodic memory in Alzheimer's disease: a quantitative meta-analysis. NeuroImage, 45(1), 181–190. doi:10.1016/j.neuroimage.2008.11.024.

    Article  PubMed  Google Scholar 

  • Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 2349–2356. doi:10.1523/JNEUROSCI.5587-06.2007.

    Article  CAS  PubMed  Google Scholar 

  • Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., et al. (2009). Correspondence of the brain's functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13040–13045.

    Article  CAS  Google Scholar 

  • Sorg, C., Riedl, V., Muhlau, M., Calhoun, V. D., Eichele, T., Laer, L., et al. (2007). Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18760–18765. doi:10.1073/pnas.0708803104.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12569–12574. doi:10.1073/pnas.0800005105.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stein, M. B., Simmons, A. N., Feinstein, J. S., & Paulus, M. P. (2007). Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. American Journal of Psychiatry, 164(2), 318–327. doi:10.1176/ajp.2007.164.2.318.

    Article  PubMed  Google Scholar 

  • Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428(6984), 751–754. doi:10.1038/nature02466.

    Article  CAS  PubMed  Google Scholar 

  • Wang, K., Liang, M., Wang, L., Tian, L., Zhang, X., Li, K., et al. (2007). Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study. Human Brain Mapping, 28(10), 967–978. doi:10.1002/hbm.20324.

    Article  PubMed  Google Scholar 

  • Yu, E., Liao, Z., Mao, D., Zhang, Q., Ji, G., Li, Y., et al. (2016). Directed functional connectivity of posterior cingulate cortex and whole brain in Alzheimer's disease and mild cognitive impairment. Current Alzheimer Research.

  • Yuan, X., Han, Y., Wei, Y., Xia, M., Sheng, C., Jia, J., He, Y., et al. (2016). Regional homogeneity changes in amnestic mild cognitive impairment patients. Neuroscience Letters, 629, 1–8. doi:10.1016/j.neulet.2016.06.047.

    Article  CAS  PubMed  Google Scholar 

  • Zang, Z. X., Yan, C. G., Dong, Z. Y., Huang, J., & Zang, Y. F. (2012). Granger causality analysis implementation on MATLAB: a graphic user interface toolkit for fMRI data processing. Journal of Neuroscience Methods, 203(2), 418–426. doi:10.1016/j.jneumeth.2011.10.006.

    Article  PubMed  Google Scholar 

  • Zheng, H., Xu, L., Xie, F., Guo, X., Zhang, J., Yao, L., et al. (2015). The altered triple networks interaction in depression under resting state based on graph theory. BioMed Research International, 2015, 386326.

    PubMed  PubMed Central  Google Scholar 

  • Zhong, Y., Huang, L., Cai, S., Zhang, Y., von Deneen, K. M., Ren, A., et al. (2014). Altered effective connectivity patterns of the default mode network in Alzheimer's disease: an fMRI study. Neuroscience Letters, 578, 171–175. doi:10.1016/j.neulet.2014.06.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is funded by the Zhejiang Provincial Natural Science Foundation of China (no. Y2091289, LY16H180007, LY13H180016) and the Science Foundation from Health Commission of Zhejiang Province (no. 2013RCA001, 2016147373, ZKJ-ZJ-1503). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxiang Ding.

Ethics declarations

Conflict of interest

Enyan Yu, Zhengluan Liao, Yunfei Tan, Yaju Qiu, Junpeng Zhu, Zhang Han, Jue Wang, Xinwei Wang, Hong Wang, Yan Chen, Qi Zhang, Yumei Li, Dewang Mao, and Zhongxiang Ding declare that they have no conflict of interest.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and the Helsinki Declaration of 1975, and the applicable revisions at the time of investigation. Informed consent was obtained from all patients. The study was approved by the institutional Ethics Committee number: 2012KY002.

Electronic supplementary material

Supplemental Fig. 1

Position of the three seed points of the triple networks. A, Posterior cingulate cortex (PCC) of the default-mode network (DMN); B, dorsal anterior cingulate cortex dACC of the salience network (SN); and C, dorsolateral prefrontal cortex (dlPFC) of the executive control network (ECN) (JPEG 163 kb)

High Resolution Image (TIFF 1521 kb)

Supplemental Fig. 2

The driving effect from PCC to other brain regions. (JPEG 639 kb)

High Resolution Image (TIFF 7721 kb)

Supplemental Fig. 3

The driving effect to PCC from other brain areas. (JPEG 624 kb)

High Resolution Image (TIFF 7422 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, E., Liao, Z., Tan, Y. et al. High-sensitivity neuroimaging biomarkers for the identification of amnestic mild cognitive impairment based on resting-state fMRI and a triple network model. Brain Imaging and Behavior 13, 1–14 (2019). https://doi.org/10.1007/s11682-017-9727-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-017-9727-6

Keywords

Navigation