Skip to main content
Log in

Unveiling the Origin of Work Hardening Behavior in an Ultrafine-Grained Manganese Transformation-Induced Plasticity Steel by Hydrogen Investigation

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To reveal the origin of work hardening behavior in an ultrafine-grained manganese transformation-induced plasticity (TRIP) steel, specific experiments were designed with the assistance of hydrogen. Although the effect of hydrogen on the austenite transformation was negligible, the work hardening rate (Θ) was apparently reduced for hydrogenated samples, indicating that TRIP effect cannot account for the high Θ alone. The collaborative effect of dislocation accumulation in ferrite and austenite transformation is proposed to explain the responsible mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1. Z. Cai, H. Ding, R. Misra and Z. Ying: Acta Mater., 2015, vol. 84, pp. 229-36.

    Article  Google Scholar 

  2. 2. X. Xiong, B. Chen, M. Huang, J. Wang and L. Wang: Scripta Mater., 2013, vol. 68, pp. 321-24.

    Article  Google Scholar 

  3. 3. S.-J. Lee, S. Lee and B.C. De Cooman: Scripta Mater., 2011, vol. 64, pp. 649-52.

    Article  Google Scholar 

  4. 4. R. Miller: Metall. Trans., 1972, vol. 3, pp. 905-12.

    Article  Google Scholar 

  5. 5. Z. Cai, H. Ding, X. Xue, J. Jiang, Q. Xin and R. Misra: Scripta Mater., 2013, vol. 68, pp. 865-68.

    Article  Google Scholar 

  6. 6. S. Lee and B.C. De Cooman: Metallurgical and Materials Transactions A, 2014, vol. 45, pp. 709-16.

    Article  Google Scholar 

  7. 7. P. Gibbs, E. De Moor, M. Merwin, B. Clausen, J. Speer and D. Matlock: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3691-702.

    Article  Google Scholar 

  8. 8. Q. Han, Y. Zhang and L. Wang: Metall. Mater. Trans. A, 2015, vol. 46, pp. 1917-26.

    Article  Google Scholar 

  9. 9. S. Lee and B.C. De Cooman: Metall. Mater. Trans. A, 2014, vol. 45, pp. 5009-16.

    Article  Google Scholar 

  10. 10. Y. Wang and E. Ma: Mater. Sci. Eng. A, 2004, vol. 375, pp. 46-52.

    Article  Google Scholar 

  11. 11. M. Calcagnotto, Y. Adachi, D. Ponge and D. Raabe: Acta Mater., 2011, vol. 59, pp. 658-70.

    Article  Google Scholar 

  12. 12. P. Jacques, Q. Furnémont, A. Mertens and F. Delannay: Philosophical Magazine A, 2001, vol. 81, pp. 1789-812.

    Article  Google Scholar 

  13. 13. T. Lee, D. Dewald, J. Eades, I. Robertson and H. Birnbaum: Rev. Sci. Instrum., 1991, vol. 62, pp. 1438-44.

    Article  Google Scholar 

  14. 14. P. Ferreira, I. Robertson and H. Birnbaum: Acta Materialia, 1998, vol. 46, pp. 1749-57.

    Article  Google Scholar 

  15. 15. I. Robertson and H. Birnbaum: Acta Metall., 1986, vol. 34, pp. 353-66.

    Article  Google Scholar 

  16. 16. H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng. A, 1994, vol. 176, pp. 191-202.

    Article  Google Scholar 

  17. 17. I. Robertson: Engineering Fracture Mechanics, 2001, vol. 68, pp. 671-92.

    Article  Google Scholar 

  18. 18. J.H. Ryu, Y.S. Chun, C.S. Lee, H. Bhadeshia and D.W. Suh: Acta Materialia, 2012, vol. 60, pp. 4085-92.

    Article  Google Scholar 

  19. 19. J.A. Ronevich, J.G. Speer and D.K. Matlock: SAE International Journal of Materials & Manufacturing, 2010, vol. 3, pp. 255-67.

    Article  Google Scholar 

  20. 20. X. Zhu, W. Li, H. Zhao and X. Jin: Int. J. Hydrogen Energy, 2013, vol. 38, pp. 10694-703.

    Article  Google Scholar 

  21. 21. X. Zhu, W. Li, H. Zhao, L. Wang and X. Jin: International Journal of Hydrogen Energy, 2014, vol. 39, pp. 13031-40.

    Article  Google Scholar 

  22. 22. H. Mecking and U. Kocks: Acta Metall., 1981, vol. 29, pp. 1865-75.

    Article  Google Scholar 

  23. 23. L. Samek, E. De Moor, J. Penning and B. De Cooman: Metall. Mater. Trans. A, 2006, vol. 37, pp. 109-24.

    Article  Google Scholar 

  24. 24. C. Beachem: Metall. Trans., 1972, vol. 3, pp. 437-51.

    Article  Google Scholar 

  25. 25. M. Dadfarnia, P. Novak, D. Ahn, J. Liu, P. Sofronis, D. Johnson and I. Robertson: Adv Mater, 2010, vol. 22, pp. 1128-35.

    Article  Google Scholar 

  26. 26. P. Sofronis: J. Mech. Phys. Solids, 1995, vol. 43, pp. 1385-407.

    Article  Google Scholar 

  27. 27. I.M. Robertson, P. Sofronis, A. Nagao, M. Martin, S. Wang, D. Gross and K. Nygren: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1085-103.

    Article  Google Scholar 

  28. 28. C. Carlton and P. Ferreira: Acta Mater., 2007, vol. 55, pp. 3749-56.

    Article  Google Scholar 

  29. 29. E. Ma, Y. Wang, Q. Lu, M. Sui, L. Lu and K. Lu: Appl. Phys. Lett., 2004, vol. 85, pp. 4932-34.

    Article  Google Scholar 

  30. 30. M.A. Meyers, A. Mishra and D.J. Benson: Prog. Mater. Sci., 2006, vol. 51, pp. 427-556.

    Article  Google Scholar 

  31. 31. S. Lee, S.-J. Lee and B.C. De Cooman: Acta Mater., 2011, vol. 59, pp. 7546-53.

    Article  Google Scholar 

  32. 32. H.K. Bhadeshia: ISIJ Int., 2002, vol. 42, pp. 1059-60.

    Article  Google Scholar 

  33. 33. E. De Moor, S. Lacroix, A. Clarke, J. Penning and J. Speer: Metallurgical and Materials Transactions A, 2008, vol. 39, pp. 2586-95.

    Article  Google Scholar 

  34. 34. X. Huang, N. Hansen and N. Tsuji: Science, 2006, vol. 312, pp. 249-51.

    Article  Google Scholar 

Download references

This research was supported by the National Natural Science Foundation of China (Nos. 51201105, 51571141 and U1564203). The authors gratefully acknowledge the support provided by Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Jin.

Additional information

Manuscript submitted November 29, 2015.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1405 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Li, W., Zhao, H. et al. Unveiling the Origin of Work Hardening Behavior in an Ultrafine-Grained Manganese Transformation-Induced Plasticity Steel by Hydrogen Investigation. Metall Mater Trans A 47, 4362–4367 (2016). https://doi.org/10.1007/s11661-016-3633-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3633-1

Keywords

Navigation