Skip to main content
Log in

Annealing Behavior of Nanostructured Aluminum Produced by Cold Rolling to Ultrahigh Strains

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The isochronal annealing behavior of nanostructured commercial purity aluminum (AA1100 and AA1200) produced by either cold rolling (CR) or accumulative roll bonding (ARB) up to ultrahigh strains of about 99.5 pct reduction in thickness has been studied in the temperature range from 200 °C to 420 °C. Microstructural and texture measurements were made using data from electron backscatter diffraction (EBSD) investigations, and the change in mechanical strength was followed using hardness measurements. A large effect of the rolling strain is observed on recovery at temperatures below 200 °C to 220 °C. This effect is exemplified by samples deformed to the largest strain, where a rapid decrease in the stored energy from approximately 2 MJ/m3 in the deformed state to less than 0.5 MJ/m3 is seen, accompanied by a large decrease in the hardness. A new method for analyzing the uniformity of the structural coarsening, based on analysis of the crystallite size distribution with respect to the mode, is described. The analysis demonstrates that annealing leads to locally nonuniform changes in the microstructure, and to a description of the annealing process at temperatures greater than 220 °C as one of conventional recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Bay, N. Hansen: Metall. Trans. A, 1979, vol. 10A, pp. 279–88

    ADS  CAS  Google Scholar 

  2. B. Bay, N. Hansen: Metall. Trans. A, 1984, vol. 15A, pp. 287–99

    ADS  CAS  Google Scholar 

  3. T. Furu, R. Orsund, E. Nes: Acta Metall. Mater., 1995, vol. 43, pp. 2209–32

    Article  ADS  CAS  Google Scholar 

  4. E. Nes: Acta Metall. Mater., 1995, vol. 43, pp. 2189–207

    Article  CAS  Google Scholar 

  5. D. Juul Jensen: Acta Metall. Mater., 1995, vol. 43, pp. 4117–29

    Article  Google Scholar 

  6. R.A. Vandermeer, D. Juul Jensen: Acta Mater., 2001, vol. 49, pp. 2083–94

    Article  CAS  Google Scholar 

  7. N. Hansen, D. Juul Jensen: Metall. Trans. A, 1986, vol. 17A, pp. 253–59

    ADS  CAS  Google Scholar 

  8. H. Jazaeri, F.J. Humphreys: Acta Mater., 2004, vol. 52, pp. 3239–50

    Article  CAS  Google Scholar 

  9. H. Jazaeri, F.J. Humphreys: Acta Mater., 2004, vol. 52, pp. 3251–62

    Article  CAS  Google Scholar 

  10. Q.F. Xing, X. Huang, N. Hansen: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1311–22

    Article  CAS  ADS  Google Scholar 

  11. P.B. Prangnell, J.R. Bowen, and A. Gholinia: Proc. 22nd Risø Int. Symp. on Materials Science, A.R. Dinesen, M. Eldrup, D. Juul Jensen, S. Linderoth, T.B. Pedersen, N.H. Pryds, A. Schrøder Pedersen, and J.A. Wert, eds., Risø National Laboratory, Roskilde, Denmark, 2001, pp. 105–26

  12. P.B. Prangnell, J.S. Hayes, J.R. Bowen, P.J. Apps, P.S. Bate: Acta Mater., 2004, vol. 52, pp. 3193–206

    Article  CAS  Google Scholar 

  13. J.H. Driver: Scripta Mater., 2004, vol. 51, pp. 819–23

    Article  CAS  Google Scholar 

  14. N. Tsuji: Severe Plastic Deformation: Towards Bulk Production of Nanostructured Materials, B.S. Altan, ed., Nova Scientific Publishers, New York, 2005, pp. 545–55

  15. X. Huang, R. Ueji, N. Tsuji, N. Hansen: Trans. Mater. Res. Soc. Jpn., 2004, vol. 29, pp. 3507–10

    CAS  Google Scholar 

  16. Ultrafine Grained Materials, R.S. Mishra, S.L. Semiatin, C. Suryanarayana, N.N. Thadhani, and T.C. Lowe, eds., TMS, Warrendale, PA, 2000, pp. 125–277

  17. H. Van Swygenhoven and P.M. Derlet: Proc. Ultrafine Grained Materials III, Y.T. Zhu, T.G. Langdon, R.Z. Valiev, S.L. Semiatin, D.H. Shin, and T.C. Lowe, eds., TMS, Warrendale, PA, 2004, pp. 11–16

  18. Q. Liu, X. Huang, D.J. Lloyd, N. Hansen: Acta Mater., 2002, vol. 50, pp. 3789–802

    Article  CAS  Google Scholar 

  19. A. Oscarsson, H.-E. Ekström, B. Hutchison: Mater. Sci. Forum, 1993, vols. 113–115, pp. 177–82

    Google Scholar 

  20. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollet: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219–74

    Article  Google Scholar 

  21. A. Godfrey, O.V. Mishin, Q. Liu: Mater. Sci. Technol., 2006, vol. 22, pp. 1263–70

    Article  CAS  Google Scholar 

  22. O.V. Mishin, A. Godfrey, L. Östensson: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 489–96

    Article  CAS  Google Scholar 

  23. W.Q. Cao, A. Godfrey, Q. Liu: Mater. Sci. Eng. A, 2003, vol. A361, pp. 9–14

    CAS  Google Scholar 

  24. W.Q. Cao, A. Godfrey, Q. Liu: J. Microsc., 2003, vol. 211, pp. 219–29

    PubMed  CAS  MathSciNet  Google Scholar 

  25. N. Kamikawa, N. Tsuji, T. Sakai, and Y. Minamino: Proc. 25th Risø Int. Symp. on Materials Science, C. Gundlach, K. Haldrup, N. Hansen, X. Huang, D. Juul Jensen, T. Leffers, Z.J. Li, S.F. Nielsen, W. Pantleon, J.A. Wert, and G. Winther, eds., Risø National Laboratory, Roskilde, Denmark, 2004, pp. 369–76

  26. W.T. Read, W. Shockley: Phys. Rev., 1950, vol. 78, pp. 275–89

    Article  MATH  ADS  CAS  Google Scholar 

  27. A. Godfrey, W.Q. Cao, N. Hansen, Q. Liu: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2371–78

    Article  CAS  Google Scholar 

  28. G.L. Wu, D. Juul Jensen: Mater. Sci. Technol., 2005, vol. 21, pp. 1407–11

    Article  CAS  Google Scholar 

  29. F.J. Humphreys, I. Brough: J. Microsc., 1999, vol. 195, pp. 6–9

    PubMed  CAS  Google Scholar 

  30. F.J. Humphreys: J. Mater. Sci., 2001, vol. 36, pp. 3833–54

    Article  CAS  Google Scholar 

  31. N. Kamikawa, N. Tsuji, X. Huang, N. Hansen: Acta Mater., 2006, vol. 54, pp. 3055–66

    Article  CAS  Google Scholar 

  32. X. Huang, N. Tsuji, Y. Minamino, and N. Hansen: Proc. 22nd Risø Int. Symp. on Materials Science, A.R. Dinesen, M. Eldrup, D. Juul Jensen, S. Linderoth, T.B. Pedersen, N.H. Pryds, A. Schrøder Pedersen, and J.A. Wert, eds., Risø National Laboratory, Roskilde, Denmark, 2001, pp. 255–62

  33. H.-E. Ekström, J. Hagström, and B. Hutchinson: Proc. 4th Int. Conf. on Recrystallization and Related Phenomena, T. Sakai and H.G. Suzuki, eds., The Japan Institute of Metals, Tokyo, Japan, 1999, pp. 809–14

  34. P.B. Prangnell, J.R. Bowen, M. Berta, P.J. Apps, P.S. Bate: Mater. Sci. Forum, 2004, vols. 467–470, pp. 1261–70

    Article  Google Scholar 

  35. N. Hansen: Mater. Sci. Forum, 2007, vol. 550, pp. 169–80

Download references

Acknowledgments

The authors acknowledge financial support from the Danish National Research Foundation to the Center for Fundamental Research: Metal Structures in Four Dimensions and from the National Natural Science Foundation of China (Contract No. 50351041). W. Pantleon is thanked for the initial suggestion of using the mode to analyze the crystallite size distribution. The authors also acknowledge valuable discussions with J.R. Bowen, R.D. Doherty, D. Juul Jensen, B. Ralph, and R.A. Vandermeer. The authors thank D. Lloyd for supplying the cold-rolled aluminum used in this study, N. Tsuji (Osaka University) for supplying the ARB samples, and Ms. Eva Nielsen for assistance with preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Godfrey.

Additional information

Manuscript submitted November 28, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, W., Godfrey, A., Hansen, N. et al. Annealing Behavior of Nanostructured Aluminum Produced by Cold Rolling to Ultrahigh Strains. Metall Mater Trans A 40, 204–214 (2009). https://doi.org/10.1007/s11661-008-9678-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9678-z

Keywords

Navigation