Skip to main content
Log in

Effect of deformation route on microstructural development in aluminum processed by equal channel angular extrusion

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Aluminum has been deformed by equal channel angular extrusion (ECAE) to obtain submicron-grained structures under different deformation routes. The deformation routes were varied by rotating billets through 0, 90, and 180 deg between each extrusion pass, and were designated as route A, BC, and C, respectively. Based on quantitative microstructural analysis, the effectiveness of the deformation route is shown to depend upon the different definition used. The order of effectiveness is (a) A > BC > C for both 90 and 120 deg dies, in terms of the generation of high-angle grain boundaries (HAGBs); (b) BC > C > A for both 90 and 120 deg dies, in terms of the formation of equiaxed shape of grains; and (c) BC > A > C for 90 deg die and BC ∼ A > C for 120 die, in terms of reducing grain size. It is suggested that the generation of HAGBs can be related to the accumulation of nonredundant strain, while the shape and orientation of grains may be linked to the shearing patterns of the deformation route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Korbel and M. Richert: Acta Metall., 1985, vol. 33, pp. 1971–78.

    Article  CAS  Google Scholar 

  2. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Progr. Mater. Sci., 2000, vol. 45, pp. 103–89.

    Article  CAS  Google Scholar 

  3. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong: Scripta Mater., 1998, vol. 39, pp. 1221–27.

    Article  CAS  Google Scholar 

  4. V.M. Segal, V.L. Reznikov, A.E. Drobysheveskiy, and V.I. Kopylov: Russ. Metall., 1981, vol. 1, pp. 115–23.

    Google Scholar 

  5. V.M. Segal: Mater. Sci. Eng., 1995, vol. A197, pp. 157–64.

    CAS  Google Scholar 

  6. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Acta Mater., 1997, vol. 45, pp. 4733–41.

    Article  CAS  Google Scholar 

  7. P.L. Sun, P.W. Kao, and C.P. Chang: Mater. Sci. Eng., 2000, vol. A283, pp. 82–85.

    CAS  Google Scholar 

  8. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2503–10.

    Article  CAS  Google Scholar 

  9. J.R. Bowen, P.B. Prangnell, and F.J. Humphreys: Mater. Sci. Forum, 2000, vols. 331–337, pp. 545–50.

    Google Scholar 

  10. A. Gholinia, P.B. Prangnell, and M.V. Markushev: Acta Mater., 2000, vol. 48, pp. 1115–30.

    Article  CAS  Google Scholar 

  11. T.L. Tsai, P.L. Sun, P.W. Kao, and C.P. Chang: Mater. Sci. Eng., 2003, vol. A342, pp. 144–51.

    CAS  Google Scholar 

  12. P. Berbon, M. Furukawa, Z. Horita, M. Nemoto, N.K. Tsenev, R.Z. Valiev, and T.G. Langdon: Mater. Sci. Forum, 1996, vols. 217–222, pp. 1013–18.

    Article  Google Scholar 

  13. S. Ferrasse, V.M. Segal, K.T. Hartwig, and R.E. Goforth: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1047–57.

    Article  CAS  Google Scholar 

  14. P.B. Berbon and T.G. Langdon: in Ultrafine Grained Materials, R.S. Mishra, S.L. Semiatin, C. Suryanarayana, N.N. Thadhani, and T.C. Lowe, eds., TMS, Warrendale, PA, 2000, pp. 381–92.

    Google Scholar 

  15. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon: Scripta Mater., 1996, vol. 35, pp. 143–46.

    Article  CAS  Google Scholar 

  16. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Mater. Sci. Eng., 1998, vol. A257, pp. 328–32.

    CAS  Google Scholar 

  17. P.B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1989–97.

    Article  CAS  Google Scholar 

  18. A. Yamashita, D. Yamaguchi, Z. Horita, and T.G. Langdon: Mater. Sci. Eng., 2000, vol. A287, pp. 100–06.

    CAS  Google Scholar 

  19. J.R. Bowen, A. Gholinia, S.M. Roberts, and P.B. Prangnell: Mater Sci. Eng., 2000, vol. A287, pp. 87–99.

    CAS  Google Scholar 

  20. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Acta Mater., 1998, vol. 46, pp. 3317–31.

    Article  CAS  Google Scholar 

  21. T.R. McNelley, D.L. Swisher, Z. Horita, and T.G. Langdon: in Ultrafine Grained Materials II, Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, and T.C. Lowe, eds., TMS, Warrendale, PA, 2002, pp. 15–24.

    Google Scholar 

  22. M. Furukawa, Z. Horita, and T.G. Langdon: Mater. Sci. Eng., 2002, vol. A332, pp. 97–109.

    CAS  Google Scholar 

  23. V.M. Segal: Mater. Sci. Eng., 2002, vol. A338, pp. 331–44.

    CAS  Google Scholar 

  24. V.M. Segal: Mater. Sci. Eng., 1999, vol. A271, pp. 322–33.

    CAS  Google Scholar 

  25. Y.T. Zhu and T.C. Lowe: Mater. Sci. Eng., 2000, vol. A291, pp. 46–53.

    CAS  Google Scholar 

  26. P.L. Sun, P.W. Kao, and C.P. Chang: in Ultrafine Grained Materials II, Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, and T.C. Lowe, eds., TMS, Warrendale, PA, 2002, pp. 35–42.

    Google Scholar 

  27. I.J. Beyerlein, R.A. Lebensohn, and C.N. Tomé: Mater. Sci. Eng., 2003, vol. A345, pp. 122–38.

    CAS  Google Scholar 

  28. Q. Liu: J. Appl. Cryst., 1994, vol. 27, pp. 755–61.

    Article  CAS  Google Scholar 

  29. Q. Liu: Ultramicroscopy, 1995, vol. 60, pp. 81–89.

    Article  CAS  Google Scholar 

  30. S.J. Zaefferer: J. Appl. Cryst., 2000, vol. 33, pp. 10–25.

    Article  CAS  Google Scholar 

  31. J.K. Mackenzie: Biometrica, 1958, vol. 45, pp. 229–40.

    Google Scholar 

  32. F.J. Humphreys, P.B. Prangnell, J.R. Bowen, A. Gholinia, and C. Harris: Phil. Trans. R. Soc. London A, 1999, vol. 357, pp. 1663–81.

    Article  CAS  Google Scholar 

  33. D.A. Hughes and N. Hansen: Acta Mater, 1997, vol. 45, pp. 3871–86.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, PL., Kao, PW. & Chang, CP. Effect of deformation route on microstructural development in aluminum processed by equal channel angular extrusion. Metall Mater Trans A 35, 1359–1368 (2004). https://doi.org/10.1007/s11661-004-0311-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0311-5

Keywords

Navigation