Skip to main content
Log in

The residual effects of bensulfuron-methyl on growth and photosynthesis of soybean and peanut

  • Original paper
  • Published:
Photosynthetica

Abstract

The effects of various concentrations of bensulfuron-methyl residues (BSM, 0–500 μg kg–1) on the growth and photosynthesis of soybean and peanut were studied. Shoot length, root length, root-to-shoot ratio, and biomass of soybean and peanut seedlings declined with the increase of BSM residue concentrations. As the concentration of BSM increased, SPAD value, net photosynthetic rate, stomatal limitation, stomatal conductance, and transpiration rate also declined with varying extent, but dark respiration rate and intercellular CO2 concentration increased gradually. PSII maximum quantum yield, actual quantum yield, and electron transport rate were significantly reduced by the BSM residues in soil, and the reduction was mostly attributed to the decrease in photochemical quenching coefficient. The results showed that photosynthesis in both crops was limited by nonstomatal factors. The residues of BSM caused reversible damage in PSII reaction centers and decrease the proportion of available excitation energy used for photochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALS:

acetolactate synthase

a.i.:

active ingredient

BSM:

bensulfuron-methyl

Chl:

chlorophyll

C i :

intercellular CO2 concentration

E :

transpiration rate

ETR:

electron transport rate

Fm :

maximum fluorescence yield of the dark-adapted state

F0 :

minimal fluorescence yield of the dark-adapted state

Fv :

variable fluorescence

Fv/Fm :

maximum quantum yield of PSII photochemistry

g s :

stomatal conductance

Ls :

stomatal limitation

LSD:

least significant difference

P N :

net photosynthetic rate

qP:

photochemical quenching coefficient

R:S:

root-to-shoot ratio

SDM:

shoot dry mass

R D :

dark respiration rate

RDM:

root dry mass

SD:

standard deviation

TDM:

total dry mass

ΦPSII :

the actual quantum yield of PSII.

References

  • Anderson R.L., Humburg N.E.: Field duration of chlorsulfuron bioactivity in the central Great Plains. — J. Environ. Qual. 16: 263–266, 1987.

    Article  CAS  Google Scholar 

  • Bao S.D.: [Soil and Agricultural Chemistry Analysis.] Pp. 25–108. Agricult. Publ., Beijing 2000. [In Chinese]

    Google Scholar 

  • Berry J., Björkman O.: Photosynthetic response and adaptation to temperature in higher plants. — Annu. Rev. Plant Physio. 31: 491–543, 1980.

    Article  Google Scholar 

  • Bigot A., Fontaine F., Clément C. et al.: Effect of the herbicide flumioxazin on photosynthetic performance of grapevine (Vitis vinifera L.). — Chemosphere 67: 1243–1251, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Blair A.M., Martin D.: A review of the activity, fate and mode of action of sulfonylures herbicides. — J. Pestic. Sci. 22: 195–219, 1998.

    Article  Google Scholar 

  • Boschin G., D'Agostina A., Arnoldi A. et al.: Biodegradation of chlorsulfuron and metsulfuron-methyl by Aspergillus niger in laboratory conditions. — J. Environ. Sci. Heal. B 38: 737–746, 2003.

    Article  Google Scholar 

  • Brown H.M.: Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. — Pestic. Sci. 29: 263–281, 1990.

    Article  CAS  Google Scholar 

  • Brusa T., Ferrari F., Bolzacchini E. et al.: Study on the microbiological degradation of bensulfuronmethyl. — Ann. Microbiol. 51: 189–200, 2001.

    CAS  Google Scholar 

  • Burzyński M., Kłobus G.: Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress. — Photosynthetica 42: 505–510, 2004.

    Article  Google Scholar 

  • Curran W.S., Knake E.L., Liebl R.A.: Corn (Zea mays) injury following use of clomazone, chlorimuron, imazaquin, and imazethapyr. — Weed Technol. 5: 539–544, 1991.

    Article  CAS  Google Scholar 

  • Dayan F.E., Zaccaro M.L.M.: Chlorophyll fluorescence as a marker for herbicide mechanisms of action. — Pestic. Biochem. Physiol. 102: 189–197, 2012.

    Article  CAS  Google Scholar 

  • Eliason R., Schoenau J., Szmigielski A. et al.: Phytotoxicity and persistence of flucarbazone-sodium in soil. — Weed Sci. 52: 857–862, 2004.

    Article  CAS  Google Scholar 

  • Farquhar G., Sharkey T.: Stomatal conductance and photosynthesis. — Annu. Rev. Plant Physio. 33: 317–345, 1982.

    Article  CAS  Google Scholar 

  • French K., Buckley S.: The effects of the herbicide metsulfuronmethyl on litter invertebrate communities in a coastal dune invaded by Chrysanthemoides monilifera spp. rotundata. — Weed Res. 48: 266–272, 2008.

    Article  CAS  Google Scholar 

  • Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta 990: 87–92, 1989.

    Article  CAS  Google Scholar 

  • González-Naranjo V., Boltes K., Bustamante I. et al.: Environmental risk of combined emerging pollutants in terrestrial environments: chlorophyll a fluorescence analysis. — Environ. Sci. Pollut. Res. 22: 6920–6931, 2015.

    Article  Google Scholar 

  • Kleter G.A., Unsworth J.B., Harris C.A.: The impact of altered herbicide residues in transgenic herbicide-resistant crops on standard setting for herbicide residues. — Pest Manag. Sci. 67: 1193–1210, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Kosobrukhov A., Knyazeva I., Mudrik V.: Plantago major plants responses to increase content of lead in soil: Growth and photosynthesis. — Plant Growth Regul. 42: 145–151, 2004.

    Article  CAS  Google Scholar 

  • Krause G., Weis E.: Chlorophyll fluorescence and photosynthesis: the basics. — Annu. Rev. Plant Phys. 42: 313–349, 1991.

    Article  CAS  Google Scholar 

  • Lazár D.: Parameters of photosynthetic energy partitioning. — J. Plant Physiol. 175: 131–147, 2015.

    Article  PubMed  Google Scholar 

  • Lin X.Y., Yang Y.Y., Zhao Y.H. et al.: Biodegradation of bensulfuron-methyl and its effect on bacterial community in paddy soils. — Ecotoxicology 21: 1281–1290, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Lin X.Y., Wang Y., Wang H.L. et al.: Isolation and characterization of a bensulfuron-methyl-degrading strain L1 of Bacillus. — Pedosphere 20: 111–119, 2010.

    Article  CAS  Google Scholar 

  • Lou G.Q., Lv W.Y., Zhi M.X.: [Studies on safety of Tribenuronmethyl and bensulfuron-methyl and their impact to the content of chlorophyll.]. — Chinese Agri. Sci. Bull. 21: 317–320, 2005. [In Chinese]

    Google Scholar 

  • Luo W., Zhao Y.H., Ding H.T. et al.: Co-metabolic degradation of bensulfuron-methyl in laboratory conditions. — J. Hazard. Mater. 158: 208–214, 2008.

    Article  CAS  PubMed  Google Scholar 

  • MacinnisNg C.M., Ralph P.J.: Towards a more ecologically relevant assessment of the impact of heavy metals on the photosynthesis of the seagrass, Zostera capricorni. — Mar. Pollut. Bull. 45: 100–106, 2002.

    Article  CAS  Google Scholar 

  • Markwell J., Osterman J.C., Mitchell J.L.: Calibration of the Minolta SPAD-502 leaf chlorophyll meter. — Photosynth. Res. 46: 467–472,1995.

    Article  CAS  PubMed  Google Scholar 

  • Marquard R.D., Tipton J.L.: Relationship between extractable chlorophyll and an in situ method to estimate leaf greenness. — HortScience 22: 13–27, 1987.

    Google Scholar 

  • Maxwell K., Johnson G.N.: Chlorophyll fluorescence: a practical guide. — J. Exp. Bot. 51: 659–668, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Müller P., Li X.P., Niyogi K.K.: Non-photochemical quenching. A response to excess light energy. — Plant Physiol. 125: 1558–1566, 2001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Muszynski P., Brodowska M., Pabich M. et al.: The sorption and degradation of sulfonylurea herbicides in soils. — Przem. Chem. 93: 531–535, 2014.

    CAS  Google Scholar 

  • Ohe M., Rapolu M., Mieda T. et al.: Decline in leaf photooxidative-stress tolerance with age in tobacco. — Plant Sci. 168: 1487–1493, 2005.

    Article  CAS  Google Scholar 

  • Pimentel D., McLaughlin L., Zepp A. et al.: Environmental and economic effects of reducing pesticide use. — BioScience 41: 402–409, 1991.

    Article  Google Scholar 

  • Riddle R.N., O'Sullivan J., Swanton C.J. et al.: Field and greenhouse bioassays to determine mesotrione residues in soil. — Weed Technol. 27: 565–572, 2013.

    Article  CAS  Google Scholar 

  • Roháček K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. — Photosynthetica 40: 13–29, 2002.

    Article  Google Scholar 

  • Sabater C., Cuesta A., Carrasco R.: Effects of bensulfuronmethyl and cinosulfuron on growth of four freshwater species of phytoplankton. — Chemosphere 46: 953–960, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Saeki M., Toyota K.: Effect of bensulfuron-methyl (a sulfonylurea herbicide) on the soil bacterial community of a paddy soil microcosm. — Biol. Fert. Soils 40: 110–118, 2004.

    Article  CAS  Google Scholar 

  • Sarmah A.K., Kookana R.S., Alston A.M.: Fate and behaviour of triasulfuron, metsulfuron-methyl, and chlorosulfuron in the Australian soil environment: a review. — Aust. J. Agr. Res. 49: 775–790, 1998.

    Article  CAS  Google Scholar 

  • Si Y.B., Zhou J., Chen H.M. et al.: Photostabilization of the herbicide bensulfuron-methyl by using organoclays. — Chemosphere 54: 943–950, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Sousa C., Pinto J., Martinazzo E. et al.: Chlorophyll a fluorescence in rice plants exposed of herbicides of group imidazolinone. — Planta Daninha 32: 141–150, 2014.

    Article  Google Scholar 

  • Su W.C., Ge Y.H., Wu R.H. et al.: [Effects of bensulfuronmethyl residue on photosynthesis traits and chlorophyll fluorescence of cron seedlings.]. — J. Maize Sci. 24: 67–74, 2016. [In Chinese]

    Google Scholar 

  • Su W.C., Sun L.L., Zhang Q. et al.: [Effects of imazapic residues on the growth and photosynthetic parameters of wheat seedlings as succeeding crop.]. — J. Triticeae Crops 33: 1226–1231, 2013. [In Chinese]

    CAS  Google Scholar 

  • Sun R.G., Zhao G.Q., Hu K.J. et al.: [Effect of salinity stress on aboveground dry matter accumulation of oat and photosynthesis at grain filling stage.]. — Chinese J. Grassl. 32: 15–20, 2010. [In Chinese]

    Google Scholar 

  • Tomar R., Sharma A., Jajoo A.: Assessment of phytotoxicity of anthracene in soybean (Glycine max) with a quick method of chlorophyll fluorescence. — Plant Biol. 17: 870–876, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Wang Q., Chen J., Li Y.: Nondestructive and rapid estimation of leaf chlorophyll and nitrogen status of peace lily using a chlorophyll meter. — J. Plant Nutr. 27: 557–569, 2004.

    Article  CAS  Google Scholar 

  • Wang Z.G., Zhou L.Y., Guo W.S. et al.: [Effects of herbicides on photosynthesis and chlorophyll fluorescence parameters in wheat leaves.]. — J. Agro-Environ. Sci. 30: 1037–1043, 2011. [In Chinese].

    CAS  Google Scholar 

  • Xia X.J., Huang Y.Y., Wang L. et al.: Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. — Pestic. Biochem. Phys. 86: 42–48, 2006.

    Article  CAS  Google Scholar 

  • Ye F.B., Wu Z.H., Dong Y.Y. et al.: [Phytotoxicity of the herbicide bensulfuron-methyl to next-season crop.]. — J. Hubei Agri. Sci. 5: 72–73, 2005. [In Chinese]

    Google Scholar 

  • Zhang G.B., Feng X.J., Zhou X.Y. et al.: Effects of paddy herbicide residues on agronomic traits and physiological metabolism of tobacco. — J. South China Agr. Univ. 37: 41–45, 2016. [In Chinese]

    Google Scholar 

  • Zhu Y.W., Zhao Y.H., Lin X.Y. et al.: Isolation, characterization and phylogenetic analysis of an aerobic bacterium capable of degrading bensulfuronmethyl. — World J. Microb. Biot. 21: 1195–1200, 2005.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. H. Wu or H. L. Xu.

Additional information

Acknowledgements: This study was supported by the Special Fund for Agro-scientific Research in the Public Interest (201203098), Science and Technology Project of Henan Province (162102110004). We are grateful to the anonymous reviewers for their valuable comments and suggestions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, W.C., Sun, L.L., Ge, Y.H. et al. The residual effects of bensulfuron-methyl on growth and photosynthesis of soybean and peanut. Photosynthetica 56, 670–677 (2018). https://doi.org/10.1007/s11099-017-0726-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0726-z

Additional key words

Navigation