Skip to main content
Log in

Water Clusters on Graphitic Carbon Surfaces

  • Review Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this review, we outline our computational efforts in understanding the interactions between water and various graphitic carbon surfaces based on quantum-mechanical level calculations. Among them, we have determined the geometry structures, electronic properties, and vibrational infrared and resonant Raman spectra of water clusters on graphene surface and single walled carbon nanotubes (SWCNTs). Specifically, we found that (1) the hexamer water cluster undergoes isomerization when interacting with a graphene surface, while the smaller water clusters maintain their cyclic or linear configurations, with little changes in their infrared peak positions and almost perfect graphene surfaces due to the physical adsorption of the water clusters; and (2) water molecules can form cylindrical crystalline structures, referred to as ice nanotubes, by hydrogen bonding under confinement within SWCNTs. Our computational results are expected to shed light on the graphene and SWCNTs studies and their applications in areas such as biology and materials science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Hodgson and S. Haq (2009). Surf. Sci. Rep. 64, 381.

    Article  CAS  Google Scholar 

  2. M. A. Henderson (2002). Surf. Sci. Rep. 46, 1.

    Article  CAS  Google Scholar 

  3. J. Carrasco, A. Hodgson, and A. Michaelides (2012). Nat. Mater. 11, 667.

    Article  CAS  Google Scholar 

  4. A. A. Chialvo, L. Vlcek, and P. T. Cummings (2014). J. Phys. Chem. C 118, 19701.

    Article  CAS  Google Scholar 

  5. M. Lorenz, B. Civalleri, L. Maschio, M. Sgroi, and D. Pullini (2014). J. Comput. Chem. 35, 1789.

    Article  CAS  Google Scholar 

  6. I. Hamada (2012). Phys. Rev. B 86, 195436.

    Article  Google Scholar 

  7. T. Zhang, Q. Xue, S. Zhang, and M. Dong (2012). Nano Today 7, 180.

    Article  CAS  Google Scholar 

  8. E. M. Huff and P. Pulay (2009). Mol. Phys. 107, 1197.

    Article  CAS  Google Scholar 

  9. C. S. Lin, R. Q. Zhang, S. T. Lee, M. Elstner, T. Frauenheim, and L. J. Wan (2005). J. Phys. Chem. B 109, 14183.

    Article  CAS  Google Scholar 

  10. P. U. Andersson, M. T. Suter, N. Markovic, and J. B. C. Pettersson (2007). J. Phys. Chem. C 111, 15258.

    Article  CAS  Google Scholar 

  11. C. Feng, R. Q. Zhang, S. L. Dong, T. A. Niehaus, and T. Frauenheim (2007). J. Phys. Chem. C 111, 14131.

    Article  CAS  Google Scholar 

  12. R. X. Song, S. Wangmo, M. S. Xin, Y. Meng, P. Huai, Z. G. Wang, and R. Q. Zhang (2013). Nanoscale 5, 6767.

    Article  CAS  Google Scholar 

  13. E. G. Gordeev, M. V. Polynski, and V. P. Ananikov (2013). Phys. Chem. Chem. Phys. 15, 18815.

    Article  CAS  Google Scholar 

  14. G. Cicero, J. C. Grossman, E. Schwegler, F. Gygi, and G. Galli (2008). J. Am. Chem. Soc. 130, 1871.

    Article  CAS  Google Scholar 

  15. B. S. González, J. Hernández-Rojas, J. Bretón, and J. M. G. Llorente (2007). J. Phys. Chem. C 111, 14862.

    Article  Google Scholar 

  16. J. Hernández-Rojas, F. Calvo, J. Bretón, and J. M. G. Llorente (2012). J. Phys. Chem. C 116, 17019.

    Article  Google Scholar 

  17. H. B. Li, L. D. Zou, L. K. Pan, and Z. Sun (2010). Environ. Sci. Technol. 44, 8692.

    Article  CAS  Google Scholar 

  18. T. S. Sreeprasad, S. M. Maliyekkal, K. P. Lisha, and T. Pradeep (2011). J. Hazard. Mater. 186, 921.

    Article  CAS  Google Scholar 

  19. R. Zangi (2004). J. Phys. 116, S5371.

    Google Scholar 

  20. N. N. Avgul and A. V. Kieslev Chemistry and Physics of Carbon (Dekker, New York, 1970).

    Google Scholar 

  21. R. R. Q. Freitas, R. Rivelino, F. de Brito Mota, and C. M. C. de Castilho (2011). J. Phys. Chem. A 115, 12348.

    Article  CAS  Google Scholar 

  22. A. Simon and F. Spiegelman (2013). J. Chem. Phys. 138, 194309.

    Article  Google Scholar 

  23. B. Collignon, P. N. M. Hoang, S. Picaud, and J. C. Rayez (2005). Chem. Phys. Lett. 406, 430.

    Article  CAS  Google Scholar 

  24. G. Perez-Hernandez and B. Schmidt (2013). Phys. Chem. Chem. Phys. 15, 4995.

    Article  CAS  Google Scholar 

  25. X. Wang, L. Feng, and Z. Cao (2014). Acta. Chim. Sinica. 72, 487.

    Article  CAS  Google Scholar 

  26. I. W. Sudiarta and D. J. W. Geldart (2006). J. Phys. Chem. A 110, 10501.

    Article  CAS  Google Scholar 

  27. D. Feller and K. D. Jordan (2000). J. Phys. Chem. A 104, 9971.

    Article  CAS  Google Scholar 

  28. A. Vernov and W. A. Steele (1992). Langmuir 8, 155.

    Article  CAS  Google Scholar 

  29. P. Jurecka, J. Sponer, J. Cerny, and P. Hobza (2006). Phys. Chem. Chem. Phys. 8, 1985.

    Article  CAS  Google Scholar 

  30. S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, and K. Tanabe (2000). J. Am. Chem. Soc. 122, 11450.

    Article  CAS  Google Scholar 

  31. E. Voloshina, D. Usvyat, M. Schuetz, Y. Dedkov, and B. Paulus (2011). Phys. Chem. Chem. Phys. 13, 12041.

    Article  CAS  Google Scholar 

  32. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert (1998). Phys. Rev. B 58, 7260.

    Article  CAS  Google Scholar 

  33. B. Aradi, B. Hourahine, and T. Frauenheim (2007). J. Phys. Chem. A 111, 5678.

    Article  CAS  Google Scholar 

  34. T. Frauenheim, G. Seifert, M. Elstner, T. Niehaus, C. Kohler, M. Amkreutz, M. Sternberg, Z. Hajnal, A. Di Carlo, and S. Suhai (2002). J. Phys. 14, 3015.

    CAS  Google Scholar 

  35. M. Elstner, P. Hobza, T. Frauenheim, S. Suhai, and E. Kaxiras (2001). J. Chem. Phys. 114, 5149.

    Article  CAS  Google Scholar 

  36. M. Elstner, T. Frauenheim, and S. Suhai (2003). J. Mol. Struct. 632, 29.

    Article  CAS  Google Scholar 

  37. W. J. Fan and R. Q. Zhang (2008). Sci. China Ser. B 51, 1203.

    Article  CAS  Google Scholar 

  38. W. J. Fan, R. Q. Zhang, B. K. Teo, B. Aradi, and T. Frauenheim (2009). Appl. Phys. Lett. 95, 013116.

    Article  Google Scholar 

  39. W. J. Fan, J. Zeng, and R. Q. Zhang (2009). J. Chem. Theory Comput. 5, 2879.

    Article  CAS  Google Scholar 

  40. C. H. Wang, S. Li, R. Q. Zhang, and Z. J. Lin (2012). Nanoscale 4, 146.

    Google Scholar 

  41. C. H. Wang, Q. Wu, W. J. Fan, R. Q. Zhang, and Z. Lin (2012). Org. Biomol. Chem. 10, 5049.

    Article  CAS  Google Scholar 

  42. J. Kim and K. S. Kim (1998). J. Chem. Phys. 109, 5886.

    Article  CAS  Google Scholar 

  43. S. S. Xantheas, C. J. Burnham, and R. J. Harrison (2002). J. Chem. Phys. 116, 1493.

    Article  CAS  Google Scholar 

  44. K. Karapetian, K. D. Jordan, and J. P. Devlin, Properties of Water Clusters on a Graphite Sheet. in V. Buch (ed.), Water in Confined Environments (Springer, New York, 2003), p 139.

  45. D. R. Paul (2012). Science 335, 413.

    Article  CAS  Google Scholar 

  46. M. Whitby and N. Quirke (2007). Nat. Nanotechnol. 2, 87.

    Article  CAS  Google Scholar 

  47. R. Zangi and A. E. Mark (2003). Phys. Rev. Lett. 91, 025502.

    Article  Google Scholar 

  48. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund Sciences of fullerenes and carbon nanotubes (Academic Press, San Diego, 1996).

    Google Scholar 

  49. M. S. P. Sansom and P. C. Biggin (2001). Nature 414, 156.

    Article  CAS  Google Scholar 

  50. N. C. M. Majumder, R. Andrews, and B. J. Hinds (2005). Nature 438, 44.

    Article  CAS  Google Scholar 

  51. J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. V. Bakajin (2006). Science 312, 1034.

    Article  CAS  Google Scholar 

  52. N. K. Jena, M. K. Tripathy, A. K. Samanta, K. R. S. Chandrakumar, and S. K. Ghosh (2012). Theor. Chem. Acc. 131, 1205.

    Article  Google Scholar 

  53. L. Wang, J. Zhao, F. Li, H. Fang, and J. P. Lu (2009). J. Phys. Chem. C 113, 5368.

    Article  CAS  Google Scholar 

  54. B. Yin and S.-L. Dong (2009). Chin. Phys. Lett. 26, 086402.

    Article  Google Scholar 

  55. H. Maniwa, M. Abe, A. Udaka, S. Suzuki, Y. Achiba, H. Kira, K. Matsuda, H. Kadowaki, and Y. Okabe (2005). Chem. Phys. Lett. 401, 534.

    Article  CAS  Google Scholar 

  56. K. Koga, G. T. Gao, H. Tanaka, and X. C. Zeng (2001). Nat. Chem. 412, 802.

    Article  CAS  Google Scholar 

  57. L. A. Curtiss, D. J. Frurip, and M. J. Lander (1979). Chem. Phys. Lett. 71, 2703.

    CAS  Google Scholar 

  58. J. Bai, J. Wang, and X. C. Zeng (2006). Proc. Natl. Acad. Sci. 103, 19664.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Qin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, WJ., Zhang, RQ. Water Clusters on Graphitic Carbon Surfaces. J Clust Sci 26, 361–373 (2015). https://doi.org/10.1007/s10876-015-0854-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0854-1

Keywords

Navigation