Skip to main content

Advertisement

Log in

Sampling technique affects detection of habitat factors influencing wild bee communities

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Reliable and consistent monitoring is essential for bee conservation. Correctly interpreting the influence of habitat characteristics on native bee communities is necessary to develop effective strategies for bee conservation and to support the provision of pollination services to agricultural crops or natural plant communities. Biases imposed by different sampling methods used to monitor bee populations can affect our ability to discern important habitat characteristics, but the extent of this bias is not well understood. We used three common sampling methods (blue vane traps, colored pan traps, and aerial net collection) to assess bee communities in fragments of Palouse Prairie in eastern Washington and northern Idaho. We determined differences in abundance, species richness, proportional representation of different genera, and functional trait characteristics among the three sampling techniques. We also evaluated differences in the relationships between bee species richness and diversity and two key habitat variables known to mediate bee populations: local plant species richness and the amount of suitable bee habitat in the surrounding landscape. Community metrics for bees collected using blue vane traps were correlated with the amount of suitable habitat in the landscape but not with plant species richness. Conversely, community metrics for bees collected using an aerial net were correlated with the local plant species richness but not with the amount of suitable habitat. Our results indicate that effective conservation of insect communities will require a combination of sampling methods to reliably discern the influence of habitat variables at different scales and across taxa with varying functional traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bartomeus I, Ascher JS, Gibbs J et al (2013) Historical changes in northeastern US bee pollinators related to shared ecological traits. PNAS 110:4656–4660. doi:10.1073/pnas.1218503110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baum KA, Wallen KE (2011) Potential bias in pan trapping as a function of floral abundance. J Kans Entomol Soc 84:155–159. doi:10.2317/JKES100629.1

    Article  Google Scholar 

  • Bawa KS (1990) Plant-pollinator interactions in tropical rain forests. Annu Rev Ecol Syst 21:399–422. doi:10.1146/annurev.es.21.110190.002151

    Article  Google Scholar 

  • Biesmeijer JC, Roberts SPM, Reemer M et al (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354. doi:10.1126/science.1127863

    Article  CAS  PubMed  Google Scholar 

  • Blaauw BR, Isaacs R (2014) Larger patches of diverse floral resources increase insect pollinator density, diversity, and their pollination of native wildflowers. Basic Appl Ecol 15:701–711.

    Article  Google Scholar 

  • Black AE, Strand E, Morgan P, et al (1998) Biodiversity and land-use history of the Palouse Bioregion: Pre-European to present. Perspectives on the land use history of North America: A context for understanding our changing environment Biological Science Report US Geological Survey, Biological Resources Division, Biological Science Report USGS/BRD/BSR–1998-0003 85–99

  • Burd M (1994) Bateman’s principle and plant reproduction: the role of pollen limitation in fruit and seed set. Bot Rev 60:83–139. doi:10.1007/BF02856594

    Article  Google Scholar 

  • Burkle LA, Marlin JC, Knight TM (2013) Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339:1611–1615

    Article  CAS  PubMed  Google Scholar 

  • Cane JH (1987) Estimation of bee size using intertegular span (Apoidea). J Kans Entomol Soc 60:145–147

    Google Scholar 

  • Cane JH, Minckley RL, Kervin LJ (2000) Sampling bees (Hymenoptera: Apiformes) for pollinator community studies: pitfalls of pan-trapping. J Kans Entomol Soc 73:225–231

    Google Scholar 

  • Cane JH, Kervin LJ, McKinley R (2013) Sensitivity of systematic net sampling for detecting shifting patterns of incidence and abundance in a floral guild of bees at Larrea tridentata. J Kans Entomol Soc 86:171–180

    Article  Google Scholar 

  • Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  • Colwell RK, Mao CX, Chang J (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85:2717–2727

    Article  Google Scholar 

  • Colwell RK, Chao A, Gotelli NJ et al (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol 5:3–21. doi:10.1093/jpe/rtr044

    Article  Google Scholar 

  • Committee on the status of pollinators in North America, National Research Council (2007) Status of pollinators in North America. The National Academies Press, Washington, D.C

    Google Scholar 

  • Davis C (2015) Biodiversity and culturally significant plants of the palouse prairie. Dissertation, University of Idaho, Moscow

  • Davis JD, Hendrix SD, Debinski DM, Hemsley CJ (2008) Butterfly, bee and forb community composition and cross-taxon incongruence in tallgrass prairie fragments. J Insect Conserv 12:69–79

    Article  Google Scholar 

  • Dicks LV, Corbet SA, Pywell RF (2002) Compartmentalization in plant-insect flower visitor webs. J Anim Ecol 71:32–43

    Article  Google Scholar 

  • Droege S (2009) The very handy bee manual: how to catch and identify bees and manage a collection. http://www.pwrc.usgs.gov/nativebees/Handy%20Bee%20Manual/Handy%20Bee%20Manual.pdf. Accessed 25 Jan 2016

  • Droege S, Tepedino VJ, Lebuhn G et al (2010) Spatial patterns of bee captures in North American bowl trapping surveys. Insect Conserv Divers 3:15–23. doi:10.1111/j.1752-4598.2009.00074.x

    Article  Google Scholar 

  • Duelli P, Obrist MK, Schmatz DR (1999) Biodiversity evaluation in agricultural landscapes: above-ground insects. Agric Ecosyst Environ 74:33–64

    Article  Google Scholar 

  • Fontaine C, Dajoz I, Meriguet J, Loreau M (2005) Functional diversity of plant–pollinator interaction webs enhances the persistence of plant communities. PLoS Biol 4:e1

    Article  PubMed Central  Google Scholar 

  • Geroff RK, Gibbs J, McCravy KW (2014) Assessing bee (Hymenoptera: Apoidea) diversity of an Illinois restored tallgrass prairie: methodology and conservation considerations. J Insect Conserv 18:951–964. doi:10.1007/s10841-014-9703-z

    Article  Google Scholar 

  • Giles V, Ascher JS (2006) A survey of the bees of the black rock forest preserve, New York. J Hymenoptera Res 15:208–231

    Google Scholar 

  • Gonzales VH, Park KE, Çakmak I et al (2016) Pan traps and bee body size in unmanaged urban habitats. J Hymenopt Res 51:241–247

    Article  Google Scholar 

  • Google (2012) https://maps.google.com. Retrieved between August-December 2012

  • Greenleaf SS, Williams NM, Winfree R et al (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589–596

    Article  PubMed  Google Scholar 

  • Grundel R, Frohnapple KJ, Jean RP, et al (2011) Effectiveness of bowl trapping and netting for inventory of a bee community. Environ Entomol 40:374–380

    Article  Google Scholar 

  • Hendrix SD, Kwaiser KS, Heard SB (2010) Bee communities (Hymenoptera: Apoidea) of small Iowa hill prairies are as diverse and rich as those of large prairie preserves. Biodivers Conserv 19:1699–1709. doi:10.1007/s10531-010-9797-x

    Article  Google Scholar 

  • Hines HM, Hendrix SD (2005) Bumble bee (Hymenoptera: Apidae) diversity and abundance in tallgrass prairie patches: Effects of local and landscape floral resources. Environ Entomol 34:1477–1484. doi:10.1603/0046-225X-34.6.1477

    Article  Google Scholar 

  • Hoehn P, Tscharntke T, Tylianakis JM, Steffan-Dewenter I (2008) Functional group diversity of bee pollinators increases crop yield. Proc R Soc B 275:2283–2291. doi:10.1098/rspb.2008.0405

    Article  PubMed  PubMed Central  Google Scholar 

  • Hulsen T, de Vlieg J, Alkema W (2008) BioVenn - a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 9:488. doi:10.1186/1471-2164-9-488

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi NK, Leslie T, Rajotte EG et al (2015) Comparative trapping efficiency to characterize bee abundance, diversity, and community composition in apple orchards. Ann Entomol Soc Am 108:785–799. doi:10.1093/aesa/sav057

    Article  Google Scholar 

  • Kearns CA, Oliveras DM (2009) Environmental factors affecting bee diversity in urban and remote grassland plots in Boulder, Colorado. J Insect Conserv 13:655–665

    Article  Google Scholar 

  • Keith DA, Rodríguez JP, Rodríguez-Clark KM et al (2013) Scientific Foundations for an IUCN Red List of Ecosystems. PLoS ONE 8:e62111. doi:10.1371/journal.pone.0062111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy CM, Lonsdorf E, Neel MC et al (2013) A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol Lett 16:584–599

    Article  PubMed  Google Scholar 

  • Klein A, Steffan–Dewenter I, Tscharntke T (2003) Fruit set of highland coffee increases with the diversity of pollinating bees. Proc R Soc Lond B Biol Sci 270:955–961. doi:10.1098/rspb.2002.2306

    Article  Google Scholar 

  • Klein AM, Vaissière BE, Cane JH et al (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc Lond B Biol Sci 274:303–313. doi:10.1098/rspb.2006.3721

    Article  Google Scholar 

  • Kovács-Hostyánszk A, Haenke S, Batáry P et al (2013) Contrasting effects of mass flowering crops on bee pollination of hedge plants at different spatial and temporal scales. Ecol Appl 23:1938–1946

    Article  Google Scholar 

  • Kremen C, Williams NM, Bugg RL et al (2004) The area requirements of an ecosystem service: crop pollination by native bee communities in California. Ecol Lett 7:1109–1119

    Article  Google Scholar 

  • Kwaiser KS, Hendrix SD (2008) Diversity and abundance of bees (Hymenoptera: Apiformes) in native and ruderal grasslands of agriculturally dominated landscapes. Agric Ecosyst Environ 124:200–204

    Article  Google Scholar 

  • Larsen NJ, Minor MA, Cruickshank RH et al (2014) Optimising methods for collecting Hymenoptera, including parasitoids and Halictidae bees, in New Zealand apple orchards. J Asis Pac Entomol 17:375–381

    Article  Google Scholar 

  • LeBuhn G, Droege S, Carboni M (2007) Monitoring methods for solitary bee species using bee bowls in North America. State of the World’s Pollinators Report 1–7

  • Looney C, Eigenbrode SD (2012) Characteristics and distribution of palouse prairie remnants: implications for conservation planning. Nat Area J 32:75–85. doi:10.3375/043.032.0109

    Article  Google Scholar 

  • Nielsen A, Steffan-Dewenter I, Westphal C et al (2011) Assessing bee species richness in two Mediterranean communities: importance of habitat type and sampling techniques. Ecol Res 26:969–983

    Article  Google Scholar 

  • NRC (2007) Status of pollinators in North America. The National Academies Press, Washington, DC

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, et al (2015) Package “vegan.” Community ecology package, version 2–2

  • Papanikolaou AD, Kühn I, Frenzel M et al (2017) Semi-natural habitats mitigate the effects of temperature rise on wild bees. J Appl Ecol 54:527–536

    Article  Google Scholar 

  • Popic TJ, Davila YC, Wardle GM (2013) Evaluation of common methods for sampling invertebrate pollinator assemblages: net sampling out-perform pan traps. PLoS ONE 8:e66665. doi:10.1371/journal.pone.0066665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potts SG, Vulliamy B, Dafni A et al (2003) Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84:2628–2642

    Article  Google Scholar 

  • Reed CC (1995) Insects surveyed on flowers in native and reconstructed prairies (Minnesota). Restorat Manag Notes 13:210–213

    Google Scholar 

  • Ribeiro Jr PJ, Diggle PJ (2001) geoR: A package for geostatistical analysis. R news 1:14–18

    Google Scholar 

  • Roulston TH, Smith SA, Brewster AL (2007) A comparison of pan trap and intensive net sampling techniques for documenting a bee (Hymenoptera: Apiformes) fauna. J Kans Entomol Soc 80:179–181. doi:10.2317/0022-8567(2007)80[179:ACOPTA]2.0.CO;2

    Article  Google Scholar 

  • Sardiñas, HS and Kremen, C (2014) Evaluating nesting microhabitat for ground-nesting bees using emergence traps. Basic Appl Ecol 15:161–168

    Article  Google Scholar 

  • Steffan-Dewenter I (2003) Importance of habitat area and landscape context for species richness of bees and wasps in fragmented orchard meadows. Conserv Biol 17:1036–1044

    Article  Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (2001) Succession of bee communities on fallows. Ecography 24:83–93

    Article  Google Scholar 

  • Stephen WP, Rao S (2005) Unscented color traps for non-Apis bees (Hymenoptera: Apiformes). J Kans Entomol Soc 78:373–380

    Article  Google Scholar 

  • Stephen WP, Rao S (2007) Sampling native bees in proximity to a highly competitive food resource (Hymenoptera: Apiformes). J Kans Entomol Soc 80:369–376

    Article  Google Scholar 

  • Team RC (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0

  • Tuell JK, Isaacs R (2009) Elevated pan traps to monitor bees in flowering crop canopies. Entomol Exp Appl 131:93–98

    Article  Google Scholar 

  • Vanbergen AJ (2013) Threats to an ecosystem service: pressures on pollinators. Front Ecol Environ 11:251–259. doi:10.1890/120126

    Article  Google Scholar 

  • Vergara CH, Badano EI (2009) Pollinator diversity increases fruit production in Mexican coffee plantations: The importance of rustic management systems. Agric Ecosyst Environ 129:117–123.

    Article  Google Scholar 

  • Westphal C, Bommarco R, Carré G et al (2008) Measuring bee diversity in different European habitats and biogeographical regions. Ecol Monogr 78:653–671

    Article  Google Scholar 

  • Williams NM, Minckley RL, Silveria FA (2001) Variation in native bee faunas and its implications for detecting community changes. Ecol Soc 5:7

    Google Scholar 

  • Williams NM, Crone EE, Roulston TH, et al (2010) Ecological and life-history traits predict bee species responses to environmental disturbances. Biol Conserv 143:2280–2291. doi:10.1016/j.biocon.2010.03.024

    Article  Google Scholar 

  • Wilson JS, Griswold T, Messinger OJ (2008) Sampling bee communities (Hymenoptera: Apiformes) in a desert landscape: are pan traps sufficient? J Kans Entomol Soc 81:288–300. doi:10.2317/JKES-802.06.1

    Article  Google Scholar 

  • Winfree R, Aguilar R, Vázquez DP et al (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90:2068–2076. doi:10.1890/08-1245.1

    Article  PubMed  Google Scholar 

  • Wood TJ, Holland JM, Goulson D (2015) A comparison of techniques for assessing farmland bumblebee populations. Oecologia 177:1093–1102

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Michael Orr, Zach Portman, Kim Huntzinger, Harold Ikerd, and Karen Wright for help with species determinations. Thanks to Cleve Davis for help with plant identification and mapping. This research was funded via a National Science Foundation-IGERT grant through the University of Idaho.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Rhoades.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 529 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhoades, P., Griswold, T., Waits, L. et al. Sampling technique affects detection of habitat factors influencing wild bee communities. J Insect Conserv 21, 703–714 (2017). https://doi.org/10.1007/s10841-017-0013-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-017-0013-0

Keywords

Navigation