Skip to main content

Anti-Parkinson Activity

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Drug Discovery and Evaluation: Pharmacological Assays
  • 245 Accesses

Abstract

In humans, Parkinson’s disease is characterized by fixed facial expression, tremor at rest, slowing of voluntary movements, impaired gait, impaired posture, and muscle weakness. A fundamental lesion in Parkinson’s disease produces a marked deficiency in the dopaminergic innervation of the basal ganglia due to degeneration of neurons in the substantia nigra. Enhancement of dopaminergic transmission restores motor function at least partially. The decrease in dopaminergic activity in the basal ganglia results in a relative excess of cholinergic influence. Therefore, dopaminergic agonists, such as levodopa a precursor of dopamine, and cholinergic (muscarinic) antagonists can be combined in the treatment of Parkinson’s disease. Enhancement of dopaminergic activity wanes with repeated treatment with dopaminergic agonists over time. Parkinson-like syndromes also occur after depletion of central stores by reserpine and after treatment with phenothiazines and other antipsychotic drugs blocking dopamine receptors (Vernier 1964; Marsden et al. 1975; Duvoisin 1976; Hornykiewicz 1975; Miller and Hiley 1975). The pathology of Parkinson’s disease is typified by the presence of cytoplasmic inclusions (Lewy bodies). The formation of these proteinaceous inclusions involves the interaction of several proteins, including α-synuclein, synphilin, parkin, and ubiquitin carboxyl-terminal hydrolases (Goldberg and Lansbury 2000; Shimohama et al. 2003; Le and Appel 2004; Meredith et al. 2004; Snyder and Wolozin 2004; von Bohlen und Halbach et al. 2004). Orr et al. (2002) gave a review on inflammatory aspects of Parkinson’s disease and highlighted the cell-to-cell interactions and immune regulations critical for neuronal homeostasis and survival. Parkinson’s disease and related synucleinopathies are considered as a new class of nervous system amyloidoses (Trojanowski and Lee 2002; Dev et al. 2004; Liu et al. 2005). None of the currently available preclinical Parkinson’s disease models characterize all of the observed human symptoms of the disease (Valadas et al. 2015). The lack of consistency between the human situation and the animals models may result from the diverse risk factors associated with the occurrence of Parkinson’s disease. Only 10 % or less of cases are associated with a genetic link, while the majority of are sporadic (Johnson and Bobrovskaya 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References and Further Reading

General Considerations

  • Bury A, Pienaar IS (2013) Behavioral testing regimens in genetic-based animal models of Parkinson’s disease: cogencies and caveats. Neurosci Biobehav Rev 37:846–859

    Article  PubMed  Google Scholar 

  • Dev KK, Hofele K, Barbien S, Buchman VL, van der Putten H (2004) Part II: α-synuclein and its molecular pathophysiological role in neurodegenerative disorders. Neuropharmacology 45:14–44

    Article  CAS  Google Scholar 

  • Duvoisin RC (1976) Parkinsonism: animal analogues of the human disorder. In: Yahr MD (ed) The basal ganglia. Raven, New York, pp 293–303

    Google Scholar 

  • Goldberg MS, Lansbury PT Jr (2000) Is there a cause-and-effect relationship between α-synuclein fibrillization and Parkinson’s disease? Nat Cell Biol 2:E115–E119

    Article  PubMed  CAS  Google Scholar 

  • Gubellini P, Kachidian P (2015) Animal models of Parkinson’s disease: an updated overview. Rev Neurol (Paris) 7:24–39

    Google Scholar 

  • Hornykiewicz O (1975) Parkinsonism induced by dopaminergic antagonists. In: Caine DB, Chase TN, Barbeau A (eds) Advances in neurology. Raven, New York, pp 155–164

    Google Scholar 

  • Johnson ME, Bobrovskaya L (2005) An update on the rotenone models of Parkinson’s disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology 46:101–116

    Article  CAS  Google Scholar 

  • Le W, Appel SH (2004) Mutant genes responsible for Parkinson’s disease. Curr Opin Pharmacol 4:79–84

    Article  PubMed  CAS  Google Scholar 

  • Liu CW, Giasson BI, Lewis KA, Lee VM, DeMartino GN, Thomas PJ (2005) A precipitating role for truncated α-synuclein and the proteasome in α-synuclein aggregation. J Biol Chem 280:22670–22678

    Article  PubMed  CAS  Google Scholar 

  • Marsden CD, Duvoisin RC, Jenner P, Parkes JD, Pycock C, Tarsy D (1975) Relationship between animal models and clinical Parkinsonism. In: Caine DB, Chase TN, Barbeau A (eds) Advances in neurology. Raven, New York, pp 165–175

    Google Scholar 

  • Meredith GE, Halliday GM, Totterdell S (2004) A critical review of the development and importance of proteinaceous aggregates in animal models of Parkinson’s disease: new insights into Lewy body formation. Parkinsonism Relat Disord 10:191–2002

    Article  PubMed  Google Scholar 

  • Miller R, Hiley R (1975) Antimuscarinic actions of neuroleptic drugs. In: Caine DB, Chase TN, Barbeau A (eds) Advances in neurology. Raven, New York, pp 141–154

    Google Scholar 

  • Orr CF, Rowe DB, Halliday GM (2002) An inflammatory review of Parkinson’s disease. Prog Neurobiol 68:325–340

    Article  PubMed  CAS  Google Scholar 

  • Shimohama S, Sawada H, Kitamura Y, Taniguchi T (2003) Disease model: Parkinson’s disease. Trends Mol Med 9:360–365

    Article  PubMed  CAS  Google Scholar 

  • Snyder H, Wolozin B (2004) Pathological proteins in Parkinson’s disease: focus on the proteasome. J Mol Neurosci 24:425–442

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski JQ, Lee VMY (2002) Parkinson’s disease and related synucleinopathies are a new class of nervous system amyloidoses. Neurotoxicology 23:457–460

    Article  PubMed  CAS  Google Scholar 

  • Valadas JS, Vos M, Verstreken P (2015) Therapeutic strategies in Parkinson’s disease: what we have learned from animal models. Ann N Y Acad Sci 1338:16–37

    Article  PubMed  CAS  Google Scholar 

  • Vernier VG (1964) Anti-Parkinsonian agents. In: Laurence DR, Bacharach AL (eds) Evaluation of drug activities: pharmacometrics. Academic, London, pp 301–311

    Google Scholar 

  • Von Bohlen und Halbach O, Schober A, Krieglstein K (2004) Genes, proteins, and neurotoxins involved in Parkinson’s disease. Prog Neurobiol 73:151–177

    Google Scholar 

In Vitro Methods

  • Cardozo DL (1993) Midbrain dopaminergic neurons from postnatal rat in long-term primary culture. Neuroscience 56:409–421

    Article  PubMed  CAS  Google Scholar 

  • Hamre R, Tharp K, Poon X, Xiong SRJ (1999) Differential strain susceptibility following 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) administration acts in an autosomal dominant fashion: quantitative analysis in seven strains of Mus musculus. Brain Res 828:91–103

    Google Scholar 

  • Smeyne M, Smeyne RJ (2002) Method for culturing postnatal substantia nigra in an in vitro model of experimental Parkinson’s disease. Brain Res Protoc 9:105–111

    Article  CAS  Google Scholar 

Inhibition of Apoptosis in Neuroblastoma SH-SY5Y Cells

  • Akao Y, Maruyama W, Yi H, Shamoto-Nagai M, Youdim MBH, Naoi M (2002a) An anti-Parkinson’s disease drug, N-propargyl-1(R)-aminoindan (rasagiline), enhances expression of anti-apoptotic bcl-2 in human dopaminergic SH-SY5Y cells. Neurosci Lett 326:105–108

    Article  PubMed  CAS  Google Scholar 

  • Akao Y, Maruyama W, Shimizu S, Yi H, Nakagawa Y, Shamoto Nagai M, Youdim MBH, Tsujimoto Y, Naoi M (2002b) Mitochondrial permeability transition mediates apoptosis induced by N-methyl(R)salsolinol, an endogenous neurotoxin, and is inhibited by Bcl-2 and rasagiline, N-propargyl-1(R)-aminoindan. J Neurochem 82:913–923

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Sobue G, Matsubara K, Hashizume Y, Dostert P, Naoi M (1997) A dopaminergic neurotoxin, 1(R), 2(N)dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisochinoline, N-methyl-(R)-salsolinol, and its oxidation product, 1,2(N)dimethyl-6,7-dihydroxyisoquinolinium ion, accumulate in the nigro-striatal system of the human brain. Neurosci Lett 223:61–64

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Sango K, Iwasa K, Minami C, Dostert P, Kawai M, Moriyasu M, Naoi M (2000) Dopaminergic neurotoxins, 6,7-dihydroy-1-(3′, 4′-dihydroxybenzyl)isoquinolines, cause different cell death in SH-SY5Y cells: apoptosis was induced by oxidized papaverolines and necrosis by reduced tetrahydropapaverolines. Neurosci Lett 291:89–92

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Akao Y, Carrillo MC, Kitani KI, Youdium MBH, Naoi M (2002) Neuroprotection by propargylamines in Parkinson’s disease. Suppression of apoptosis and induction of prosurvival genes. Neurotoxicol Teratol 24:675–682

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Weinstock M, Youdin MBH, Nagai M, Naoi M (2003) Anti-apoptotic action of anti-Alzheimer drug, TV3326 [(N-propargyl)-(3R)-aminoindan-5-yl]-ethyl methyl carbamate, a novel cholinesterase-monoamine oxidase inhibitor. Neurosci Lett 341:233–236

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Yi H, Takahashi T, Shimazu S, Ohde H, Yoneda F, Iwasa K, Naoi M (2004a) Neuroprotective function of R-(−)-1-(benzofuran-2-yl)-2-propylaminopentane, [R-(−)-BPAP], against apoptosis induced by N-methyl(R)salsolinol, an endogenous dopaminergic neurotoxin, in human dopaminergic neuroblastoma SH-SY5Y cells. Life Sci 75:107–117

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Nitta A, Shamoto-Nagai M, Hirata Y, Akao Y, Yodim M, Furukawa S, Nabeshima T, Naoi M (2004b) N-Propargyl-1 (R)-aminoindan, rasagiline, increases glial cell line-derived neurotrophic factor (GDNF) in neuroblastoma SH-SY5Y cells through activation of NF-κB transcription factor. Neuro Chem Int 44:393–400

    Article  CAS  Google Scholar 

  • Naoi M, Maruyama W (2001) Future of neuroprotection in Parkinson’s disease. Parkinsonism Relat Disord 8:139–145

    Article  PubMed  CAS  Google Scholar 

  • Naoi M, Maruyama W, Dostert P, Hashizume Y, Nakahara D, Takahashi T, Ota M (1996) Dopamine-derived endogenous 1(R), 2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisochinoline, N-methyl-(R)-salsolinol, induced parkinsonism in rat: biochemical, pathological and behavioral studies. Brain Res 709:285–295

    Article  PubMed  CAS  Google Scholar 

  • Naoi M, Maruyama W, Dostert P, Hashizume Y (1997) N-methyl-(R)-salsolinol as a dopaminergic neurotoxin: from an animal model to an early marker of Parkinson’s disease. J Neural Transm Suppl 50:89–105

    Article  PubMed  CAS  Google Scholar 

  • Naoi M, Maruyama W, Akao Y, Zhang J, Parvez H (2000) Apoptosis induced by an endogenous neurotoxin, N-methyl(R)salsolinol, in dopamine neurons. Toxicology 153:123–141

    Article  PubMed  CAS  Google Scholar 

  • Naoi M, Maruyama W, Akao Y, Yi H (2002) Dopamine-derived endogenous N-methyl-(R)-salsolinol. Its role in Parkinson’s disease. Neurotoxicol Teratol 24:579–591

    Article  PubMed  CAS  Google Scholar 

  • Patorino JG, Simbula G, Yamamoto K Jr, Glascott PA, Rothman RJ, Farber G (1996) The cytotoxicity of tumor necrosis factor depends on induction of the mitochondrial permeability transition. J Biol Chem 271:27792–27798

    Google Scholar 

  • Tatton NA (2000) Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp Neurol 166:29–43

    Article  PubMed  CAS  Google Scholar 

  • Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  PubMed  CAS  Google Scholar 

  • Youdim MBH, Amit T, Falach-Yogev M, Am OB, Maruyama W, Naoi M (2003) The essentiality of Bcl-2, PKC and proteasome-ubiquitin complex activations in the neuroprotective-antiapoptotic action of the anti-Parkinson drug, rasagiline. Biochem Pharmacol 66:1635–1641

    Article  PubMed  CAS  Google Scholar 

In Vivo Methods

  • Agarwal JC, Chandishwar N, Sharma M, Gupta GP, Bhargava KP, Shanker K (1983) Some new piperazino derivatives as antiparkinson and anticonvulsant agents. Arch Pharm (Weinheim) 316:690–694

    Google Scholar 

  • Bebbington A, Brimblecombe RW, Shakeshaft D (1966) The central and peripheral activity of acetylenic amines related to oxotremorine. Br J Pharmacol 26:56–67

    CAS  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuma M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    Article  PubMed  CAS  Google Scholar 

  • Cho AK, Haslett WL, Jenden DJ (1962) The peripheral actions of oxotremorine, a metabolite of tremorine. J Pharmacol Exp Ther 138:249–257

    PubMed  CAS  Google Scholar 

  • Clement JG, Dyck WR (1989) Device for quantitating tremor activity in mice: antitremor activity of atropine versus soman- and oxotremorine-induced tremors. J Pharmacol Methods 22:25–36

    Article  PubMed  CAS  Google Scholar 

  • Cousins MS, Finn M, Trevitt J, Carriero DL, Conlan A, Salamone JD (1999) The role of ventrolateral striatal acetylcholine in the production of tacrine-induced jaw movements. Pharmacol Biochem Behav 62:439–447

    Article  PubMed  CAS  Google Scholar 

  • Coward DM, Doggett NS, Sayers AC (1977) The pharmacology of N-carbamoyl-2-(2,6-dichlorophenyl)acetamidine hydrochloride (LON-954) a new tremorigenic agent. Arzneim Forsch/Drug Res 27:2326–2332

    CAS  Google Scholar 

  • Denk H, Haider M, Kovac W, Studynka G (1968) Behavioral changes and neuropathological feature in rats intoxicated with 3-acetylpyridine. Acta Neuropathol 10:34–44

    Article  PubMed  CAS  Google Scholar 

  • Duvoisin RC (1976) Parkinsonism: animal analogues of the human disorder. In: Yahr MD (ed) The basal ganglia. Raven, New York, pp 293–303

    Google Scholar 

  • Everett GM (1964) Animal and clinical techniques for evaluating anti-Parkinson agents. In: Nodin JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical, Chicago, pp 359–368

    Google Scholar 

  • Fowler SC, Birkestrand BR, Chen R, Moss SJ, Vorontsova E, Wang G, Zarcone TJ (2001) A force-plate actometer for quantitating rodent behaviors: illustrative data on locomotion, rotation, spatial patterning, stereotypies, and tremor. J Neurosci Methods 107:107–124

    Article  PubMed  CAS  Google Scholar 

  • Frances H, Chermat R, Simon P (1980) Oxotremorine behavioural effects as a screening test in mice. Prog Neuropsychopharmacol Biol Psychiatry 4:241–245

    Article  CAS  Google Scholar 

  • Johnson JD, Meisenheimer TL, Isom GE (1986) A new method for quantification of tremors in mice. J Pharmacol Methods 16:329–337

    Article  PubMed  CAS  Google Scholar 

  • Johnson ME, Bobrovskaya L (2015) An update on the rotenone models of Parkinson’s disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology 46:101–116

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita K, Watanabe Y, Yamamura M, Matsuoka Y (1998) TRH receptor agonists ameliorate 3-acetylpyridine-induced ataxia through NMDA receptors in rats. Eur J Pharmacol 343:129–133

    Article  PubMed  CAS  Google Scholar 

  • Matthews RT, Chiou CY (1979) A rat model for resting tremor. J Pharmacol Methods 2:193–201

    Article  Google Scholar 

  • Mayorga AJ, Carriero MS, Cousins MS, Gianutsos G, Salamone JD (1997) Tremulous jaw movements produced by acute tacrine administration: possible relation to Parkinsonian side effects. Pharmacol Biochem Behav 56:273–279

    Article  PubMed  CAS  Google Scholar 

  • Ringdahl B, Jenden DJ (1983) Pharmacological properties of oxotremorine and its analogs. Life Sci 32:2401–2413

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Carlson BB, Rios C, Lentini E, Correa M, Wisniecki A, Betz A (2005) Dopamine agonists suppress cholinomimetic-induced tremulous jaw movements in an animal model of Parkinsonism: tremorolytic effects of pergolide, ropinirole and CY 208–243. Behav Brain Res 156:173–179

    Article  PubMed  CAS  Google Scholar 

  • Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JZ (2003a) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23:10756–10764

    PubMed  CAS  Google Scholar 

  • Sherer TB, Kim JH, Betarbet R, Greenamyre JT (2003b) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation. Exp Neurol 1789:9–16

    Article  Google Scholar 

  • Stanford JA, Fowler SC (1997) Scopolamine reversal of tremor produced by low doses of physostigmine in rats: evidence for a cholinergic mechanism. Neurosci Lett 225:157–160

    Article  PubMed  CAS  Google Scholar 

  • Turner RA (1965) Anticonvulsants. Academic, New York, pp 164–172

    Google Scholar 

  • Vernier VG (1964) Anti-Parkinsonian agents. In: Laurence DR, Bacharach AL (eds) Evaluation of drug activities: pharmacometrics. Academic, London, pp 301–311

    Google Scholar 

  • Wang G, Fowler SC (2001) Concurrent quantification of tremor and depression of locomotor activity induced in rats by harmaline and physostigmine. Psychopharmacology (Berl) 158:273–280

    Article  CAS  Google Scholar 

  • Watanabe Y, Kinoshita K, Koguchi A, Yamamura M (1997) A new method for evaluating motor deficits in 3-acetylpyridine-treated rats. J Neurosci Methods 77:25–29

    Article  PubMed  CAS  Google Scholar 

MPTP Model of Parkinson’s Disease

  • Asin KE, Domino EF, Nikkel A, Shiosaki K (1997) The selective dopamine D1 receptor agonist α-86929 maintains efficacy with repeated treatment in rodent and primate models of Parkinson’s disease. J Pharmacol Exp Ther 281:454–459

    PubMed  CAS  Google Scholar 

  • Belluzzi JD, Domino EF, May JM, Bankiewicz KS, McAfee DA (1994) N-0923, a selective dopamine D2 receptor agonist, is efficacious in rat and monkey models of Parkinson’s disease. Mov Disord 9:147–154

    Article  PubMed  CAS  Google Scholar 

  • Bernardini GL, Speciale SG, German DC (1990) Increased midbrain dopaminergic activity following 2′CH3-MPTP-induced dopaminergic cell loss: an in vitro electrophysiological study. Brain Res 527:123–129

    Article  PubMed  CAS  Google Scholar 

  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci U S A 80:4546–4550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiba K, Trevor A, Castagnoli N (1984) Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 120:574–578

    Article  PubMed  CAS  Google Scholar 

  • Close SP, Elliott PJ (1991) Procedure for assessing the behavioral effects of novel anti-Parkinsonian drugs in normal and MPTP-treated marmosets following central microinfusions. J Pharmacol Methods 25:123–131

    Article  PubMed  CAS  Google Scholar 

  • Domino EF, Sheng J (1993) Relative potency of some dopamine agonists with varying selectivities for D1 and D2 receptors in MPTP-induced hemiparkinsonian monkeys. J Pharmacol Exp Ther 265:1387–1391

    PubMed  CAS  Google Scholar 

  • Doudet DJ, Wyatt RJ, Cannon-Spoor E, Suddath R, McLellan CA, Cohen RM (1993) 6-(18F)-Fluoro-L-DOPA and cerebral blood flow in unilaterally MPTP-treated monkeys. J Neural Transplant Plast 4:27–38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuxe K, Janson AM, Rosén L, Finnman UB, Tanganelli S, Morari M, Goldstein M, Agnati LF (1992) Evidence for a protective action of the vigilance promoting drug Modafinil on the MPTP-induced degeneration of the nigrostriatal dopamine neurons in the black mouse: an immunocytochemical and biochemical analysis. Exp Brain Res 88:117–130

    Article  PubMed  CAS  Google Scholar 

  • Giovanni A, Sonsalla PK, Heikkila RF (1994) Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Part 2: central administration of 1-methyl-4-phenylpyridinium. J Pharmacol Exp Ther 270:1008–1014

    PubMed  CAS  Google Scholar 

  • Gnanalingham KK, Hunter AJ, Jenner P, Marsden CD (1995) Selective dopamine antagonist pretreatment on the antiparkinsonian effects of benzazepine D1 dopamine agonists in rodent and primate models of Parkinson’s disease the differential effects of D1 dopamine antagonists in the primate. Psychopharmacology (Berl) 117:403–412

    Article  CAS  Google Scholar 

  • Grunblatt E, Mandel S, Maor G, Youdim MBH (2001) Gene expression analysis of N-methyl-4-phenyl-1,2,3,6 tetrahydropyridine mice model of Parkinson’s disease using cDNA microarray: effect of R-apomorphine. J Neurochem 78:1–12

    Article  PubMed  CAS  Google Scholar 

  • Hamre K, Tharp R, Poon K, Xiong X, Smeyna RJ (1999) Differential strain susceptibility following 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration acts in an autosomal fashion: quantitative analysis in seven strains of Mus musculus. Brain Res 828:91–103

    Google Scholar 

  • Heikkila RE, Manzino L, Cabbat FS, Duvoisin RC (1984) Protection against dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature 311:467–469

    Article  PubMed  CAS  Google Scholar 

  • Kebabian JW, Britton DR, DeNinno MP, Perner R, Smith L, Jenner P, Schoenleber R, Williams M (1992) α-77363: a potent and selective D1 receptor antagonist with antiparkinsonian activity in marmosets. Eur J Pharmacol 229:203–209

    Google Scholar 

  • Kindt MV, Youngster SK, Sonsalla PK, Duvoisin RC, Heikkila RE (1988) Role for monoamine oxidase-A (MAO-A) in the bioactivation and nigrostriatal dopaminergic neurotoxicity of the MPTP analog, 2′Me-MPTP. Eur J Pharmacol 146:313–318

    Article  PubMed  CAS  Google Scholar 

  • Lange KW (1989) Circling behavior in old rats after unilateral intranigral injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Life Sci 45:1709–1714

    Article  PubMed  CAS  Google Scholar 

  • Lange KE (1990) Behavioural effects and supersensitivity in the rat following intranigral MPTP and MPP+ administration. Eur J Pharmacol 175:57–61

    Article  PubMed  CAS  Google Scholar 

  • Mandel S, Weinreb O, Youdim MBH (2003) Using cDNA microarray to assess Parkinson’s disease models and the effects of neuroprotective drugs. Trends Pharmacol Sci 23:184–191

    Article  CAS  Google Scholar 

  • Muramatu Y, Kurosaki R, Watanabe H, Michimata M, Matsubara M, Imai Y, Araki T (2003) Cerebral alterations in a MPTP-mouse model of Parkinson’s disease an immunocytochemical study. J Neural Transm 110:1129–1144

    Article  CAS  Google Scholar 

  • Nomoto M, Jenner P, Marsden CD (1985) The dopamine D2 agonist LY 141865, but not the D1 agonist SKF 38393, reverses parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the common marmoset. Neurosci Lett 57:37–41

    Article  PubMed  CAS  Google Scholar 

  • Nomoto M, Jenner P, Marsden CD (1988) The D1 agonist SKF 38393 inhibits the anti-Parkinsonian activity of the D2 agonist LY 141555 in the MPTP-treated marmoset. Neurosci Lett 93:275–280

    Article  PubMed  CAS  Google Scholar 

  • Raz A, Vaadia E, Bergman H (2000) Firing pattern and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J Neurosci 20:8559–8571

    PubMed  CAS  Google Scholar 

  • Rollema H, Alexander GM, Grothusen JR, Matos FF, Castagnoli N Jr (1989) Comparison of the effects of intracerebrally administered MPP+(1-methyl-4-phenylpyridinium) in three species: microdialysis of dopamine and metabolites in mouse, rat and monkey striatum. Neurosci Lett 106:275–281

    Article  PubMed  CAS  Google Scholar 

  • Schober A (2005) Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 318:215–224

    Article  Google Scholar 

  • Sedelis M, Schwarting RKW, Huston JP (2001) Behavioral phenotyping of the MPTP mouse model on Parkinson’s disease. Behav Brain Res 125:109–122

    Article  PubMed  CAS  Google Scholar 

  • Special SG (2002) MPTP: insights into Parkinsonian neurodegeneration. Neurotoxicol Teratol 24:607–620

    Article  Google Scholar 

  • Temlett JA, Quinn NP, Jenner PG, Marsden CD, Pourcher E, Bonnet AM, Agid Y, Markstein R, Lataste X (1989) Antiparkinsonian activity of CY 208–243, a partial D-1 dopamine receptor agonist, in MPTP-treated marmosets and patients with Parkinson’s disease. Mov Disord 4:261–265

    Article  PubMed  CAS  Google Scholar 

Reserpine Antagonism

  • Abbott B, Starr BS, Starr MS (1991) CY 208–243 behaves as a typical D-1 agonist in the reserpine-treated mouse. Pharmacol Biochem Behav 38:259–263

    Article  PubMed  CAS  Google Scholar 

  • Agarwal JC, Chandishwar N, Sharma M, Gupta GP, Bhargava KP, Shanker K (1983) Some new piperazine derivatives as antiparkinson and anticonvulsant agents. Arch Pharm (Weinheim) 316:690–694

    Google Scholar 

  • Amt J (1985) Behavioral stimulation is induced by separate dopamine D1 and D2 receptor sites in reserpine pretreated but not in normal rats. Eur J Pharmacol 113:79–88

    Article  Google Scholar 

  • Duvoisin RC (1976) Parkinsonism: animal analogues of the human disorder. In: Yahr MD (ed) The basal ganglia. Raven, New York, pp 293–303

    Google Scholar 

  • Nisewander JL, Castañeda E, Davis DA (1994) Dose-dependent differences in the development of reserpine-induced oral dyskinesias in rats: support of a model of tardive dyskinesia. Psychopharmacology (Berl) 116:79–84

    Article  Google Scholar 

Circling Behavior in Nigrostriatal Lesioned Rats

  • Agarwal JC, Chandishwar N, Sharma M, Gupta GP, Bhargava KP, Shanker K (1983) Some new piperazine derivatives as antiparkinson and anticonvulsant agents. Arch Pharm (Weinheim) 316:690–694

    Google Scholar 

  • Agid Y, Javoy F, Glowinski J, Bouvet D, Sotelo C (1973) Injection of 6-hydroxydopamine into the substantia nigra of the rat. II. Diffusion and specificity. Brain Res 58:291–301

    Article  PubMed  CAS  Google Scholar 

  • Breysse N, Baunez C, Spooren W, Gasparini F, Amalric M (2002) Chronic but not acute treatment with a metabotropic glutamate 5 receptor antagonist reverses the akinetic deficits in a rat model of Parkinsonism. J Neurosci 22:5669–5678

    PubMed  CAS  Google Scholar 

  • Carey RJ (1989) Stimulant drugs as conditioned and unconditioned stimuli in a classical conditioning paradigm. Drug Dev Res 16:305–315

    Article  CAS  Google Scholar 

  • Carpenter MB, McMasters RE (1964) Lesions of the substantia nigra in the rhesus monkey. Efferent fiber degeneration and behavioral observations. Am J Anat 114:293–319

    Article  PubMed  CAS  Google Scholar 

  • Clineschmidt BV, Martin GE, Bunting PR (1982) Central sympathomimetic activity of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a, d]cyclohepten-5,10-imine (MK-801), a substance with potent anticonvulsant, central sympathomimetic, and apparent anxiolytic properties. Drug Dev Res 2:135–145

    Article  CAS  Google Scholar 

  • Costall B, Kelly ME, Naylor RJ (1983) The production of asymmetry and circling behavior following unilateral, intrastriatal administration of neuroleptic agents: a comparison of abilities to antagonise striatal function. Eur J Pharmacol 96:79–86

    Article  PubMed  CAS  Google Scholar 

  • De Jonge MC, Funcke ABH (1962) Sinistrotorsion in guinea pigs as a method of screening central anticholinergic activity. Arch Int Pharmacodyn Ther 137:375–382

    PubMed  CAS  Google Scholar 

  • Emonds-Alt X, Bichon D, Ducoux JP, Heaulme M, Miloux B, Poncelet M, Proietto V, Van Broeck D, Vilain P, Neliat G, Soubrié P, Le Fur G, Brelière JC (1995) SR 142801, the first potent non-peptide antagonist of the tachykinin NK3 receptor. Life Sci 56:27–32

    Google Scholar 

  • Engber TM, Susel Z, Juncos JL, Chase TN (1989) Continuous and intermittent levodopa differentially affect rotation induced by D-1 and D-2 dopamine agonists. Eur J Pharmacol 168:291–298

    Article  PubMed  CAS  Google Scholar 

  • Etemadzadeh E, Koskinen L, Kaakola S (1989) Computerized rotometer apparatus for recording circling behavior. Methods Find Exp Clin Pharmacol 11:399–407

    PubMed  CAS  Google Scholar 

  • Finnegan KT, Skratt JJ, Irwin I, De Lanney LE, Langston JW (1990) Protection against DSP-4-induced neurotoxicity by deprenyl is not related to its inhibition of MAK B. Eur J Pharmacol 184:119–126

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald LW, Miller KJ, Ratty AK, Glick SD, Teitler M, Gross KW (1992) Asymmetric evaluation of striatal dopamine D2 receptors in the chakragati mouse: neurobehavioral dysfunction in a transgenic insertional mutant. Brain Res 580:18–26

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Agnati LF, Corrodi H, Everitt BJ, Hökfelt T, Löfström A, Ungerstedt U (1975) Action of dopamine receptor agonists in forebrain and hypothalamus: rotational behavior, ovulation, and dopamine turnover. In: Caine DB, Chase TN, Barbeau A (eds) Advances in neurology. Raven, New York, pp 223–242

    Google Scholar 

  • Garrett BE, Holtzman SG (1995) The effects of dopamine agonists on rotational behavior in non-tolerant and caffeine-tolerant rats. Behav Pharmacol 6:843–851

    Article  PubMed  CAS  Google Scholar 

  • Garrett BE, Holtzman SG (1996) Comparison of the effects of prototypical behavioral stimulants on locomotor activity and rotational behavior in rats. Pharmacol Biochem Behav 54:469–477

    Article  PubMed  CAS  Google Scholar 

  • Haque NSK, Hlavin ML, Fawcell JW, Dunnett SB (1996) The neurotrophin NT4/5, but not NT3, enhances the efficacy of nigral grafts in a rat model of Parkinson’s disease. Brain Res 712:45–52

    Article  PubMed  CAS  Google Scholar 

  • Harro J, Terasmaa A, Eller M, Rinken A (2003) Effect of denervation of the locus coeruleus projections by DSP-4 treatment on [3H]-raclopride binding to dopamine D2 receptors and D2 receptor-G protein interaction in rat striatum. Brain Res 976:209–215

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Marschitz M, Terenius L, Grehn L, Ungerstedt U (1989) Rotational behaviour produced by intranigral injections of bovine and human β-casomorphins in rats. Psychopharmacology (Berl) 99:357–361

    Article  CAS  Google Scholar 

  • Hudson JL, Levin DR, Hoffer BJ (1993) A 16-channel automated rotometer system for reliable measurement of turning behavior in 6-hydroxydopamine lesioned and transplanted rats. Cell Transplant 2:507–514

    PubMed  CAS  Google Scholar 

  • Kebabian JW, Britton DR, DeNinno MP, Perner R, Smith L, Jenner P, Schoenleber R, Williams M (1992) A-77363: a potent and selective D1 receptor antagonist with antiparkinsonian activity in marmosets. Eur J Pharmacol 229:203–209

    Google Scholar 

  • König JFR, Klippel RA (1963) The rat brain a stereotaxic atlas. Williams and Wilkins, Baltimore

    Google Scholar 

  • Lebsanft HB, Kohler T, Kovar KA, Schmidt WJ (2005) 3,4-Methylenedioxy methylamphetamine counteracts akinesia enantioselectively in rat rotational behavior and catalepsy. Synapse 55:148–155

    Article  PubMed  CAS  Google Scholar 

  • Loscher W, Richter A, Nikkhah G, Rosenthal C, Ebert U, Hedrich HJ (1996) Behavioral and neurochemical dysfunction in the circling (CI) rat: a novel genetic animal of a movement disorder. Neuroscience 74:1135–1142

    Article  PubMed  CAS  Google Scholar 

  • Mandel RJ, Wilcox RE, Randall PK (1992) Behavioral quantification of striatal dopaminergic supersensitivity after bilateral 6-hydroxydopamine lesions in the mouse. Pharmacol Biochem Behav 41:343–347

    Article  PubMed  CAS  Google Scholar 

  • McElroy JF, Ward KA (1995) 7-OH-DPAT, a dopamine D3-selective receptor agonist, produces contralateral rotation in 6-hydroxydopamine-lesioned rats. Drug Dev Res 34:329–335

    Article  CAS  Google Scholar 

  • Meissner W, Harnack D, Paul G, Reum T, Sohr R, Morgenstern R, Kupsch A (2002) Deep brain stimulation of subthalamic neurons increases dopamine metabolism and induces contralateral circling in freely moving 6-hydroxydopamine-lesioned rats. Neurosci Lett 328:105–108

    Article  PubMed  CAS  Google Scholar 

  • Mele A, Fontana D, Pert A (1997) Alterations in striatal dopamine overflow during rotational behavior induced by amphetamine, phencyclidine and MK 801. Synapse 26:218–244

    Article  PubMed  CAS  Google Scholar 

  • Morelli M (1990) Blockade of NMDA transmission potentiates dopaminergic D-1 while reduces D-2 responses in the 6-OHDA model of Parkinson. Pharmacol Res 22(Suppl 2):343

    Article  Google Scholar 

  • O’Neill MJ, Murray TK, Whalley K, Ward MA, Hicks CA, Woodhouse S, Osborne DJ, Skolnick P (2004) Neurotrophic actions of the novel AMPA receptor potentiator, LY404187 in rodent models of Parkinson’s disease. Eur J Pharmacol 486:163–174

    Article  PubMed  CAS  Google Scholar 

  • Perese DA, Ulman J, Viola J, Ewing SE, Bankiewicz KS (1989) A 6-hydroxydopamine-induced selective Parkinsonian rat model. Brain Res 494:285–293

    Article  PubMed  CAS  Google Scholar 

  • Poncelet M, Gueudet C, Emonds-Alt X, Belière JC, Le Fur G, Soubrié PH (1993) Turning behavior induced in mice by a neurokinin A receptor antagonist: selective blockade by SR 48968, a non-peptide receptor antagonist. Neurosci Lett 149:40–42

    Article  PubMed  CAS  Google Scholar 

  • Sauer H, Oertel WH (1994) Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 59:401–415

    Article  PubMed  CAS  Google Scholar 

  • Schwarting RKW, Huston JP (1996) The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol 50:275–331

    Article  PubMed  CAS  Google Scholar 

  • Schwarz RD, Stein JW, Bernard P (1978) Rotometer for recording rotation in chemically or electrically stimulated rats. Physiol Behav 20:351–354

    Article  PubMed  CAS  Google Scholar 

  • Smith ID, Todd MJ, Beninger RJ (1996) Glutamate receptor agonist injections into the dorsal striatum cause contralateral turning in the rat: involvement of kainate and AMPA receptors. Eur J Pharmacol 301:7–17

    Article  PubMed  CAS  Google Scholar 

  • Spooren WPJM, Gasparini F, Bergmann R, Kuhn R (2000) Effects of the prototypical mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine on rotarod, locomotor activity and rotational responses in unilateral 6-OHDA-lesioned rats. Eur J Pharmacol 406:403–410

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan J, Schmidt WJ (2003) Potentiation of Parkinsonian symptoms by depletion of locus coeruleus noradrenaline in 6-hydroxydopamine-induced partial degeneration of substantia nigra in rats. Eur J Neurosci 17:2586–2592

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan J, Schmidt WJ (2004) Behavioral and neurochemical effects of noradrenergic depletion with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine in 6-hydroxydopamine-induced rat model of Parkinson’s disease. Behav Brain Res 151:191–199

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U (1971) Postsynaptic hypersensitivity after 6-hydroxydopamine induced degeneration of the nigrostriatal dopamine system. Acta Physiol Scand Suppl 367:69–93

    Article  PubMed  CAS  Google Scholar 

  • Vernier VG, Unna KR (1963) The central nervous system effects of drugs in monkeys with surgically-induced tremor: atropine and other antitremor agents. Arch Int Pharmacodyn Ther 141:30–53

    PubMed  CAS  Google Scholar 

  • Worms P, Martinez J, Briet C, Castro B, Bizière K (1986) Evidence for dopaminomimetic effect of intrastriatally injected cholecystokinin octapeptide in mice. Eur J Pharmacol 121:395–401

    Article  PubMed  CAS  Google Scholar 

Elevated Body Swing Test

  • Borlongan CV, Sanberg PR (1995) Elevated body swing test: a new behavioral parameter for rats with 6-hydroxydopamine-induced hemiparkinsonism. J Neurosci 15:5372–5378

    PubMed  CAS  Google Scholar 

  • Borlongan CV, Randall TS, Cahill DW, Sanberg PR (1995) Asymmetrical motor behavior in rats with unilateral excitotoxic lesions as revealed by the elevated body swing test. Brain Res 676:231–234

    Article  PubMed  CAS  Google Scholar 

  • Ingberg E, Gudijonsdottir J, Theodorsson E, Theodorsson A, Strom JO (2015) Elevated body swing test after focal cerebral ischemia in rodents: methodological considerations. BCM Neurosci 16(1):50

    Google Scholar 

Skilled Paw Reaching in Rats

  • Abrous DN, Dunnett SB (1994) Paw reaching test in rats: the staircase test. Neurosci Protoc 10:1–11

    Google Scholar 

  • Abrous DN, Shaltot ARA, Torres EM, Dunnett SB (1993) Dopamine-rich grafts in the neostriatum and/or nucleus accumbens: effects on drug-induced behaviours and skilled paw-reaching. Neuroscience 53:187–197

    Article  PubMed  CAS  Google Scholar 

  • Barnéoud P, Parmentier S, Mazadier M, Miquet JM, Boireau A, Dubedat P, Blanchard JC (1995) Effects of complete and partial lesions of the dopaminergic mesotelenephalic system of skilled forelimb use in rats. Neuroscience 67:837–846

    Article  PubMed  Google Scholar 

  • Barnéoud P, Mazadier M, Miquet JM, Parmentier S, Dubédat P, Doble A, Boireau A (1996) Neuroprotective effects of riluzole on a model of Parkinson’s disease in the rat. Neuroscience 74:971–983

    Article  PubMed  Google Scholar 

  • Fricker RA, Annett LE, Torres EM, Dunnett SB (1996) The placement of a striatal ibotenic acid lesion affects skilled forelimb use and the direction of drug-induced rotation. Brain Res Bull 41:409–416

    Article  PubMed  CAS  Google Scholar 

  • Fricker RA, Torres EM, Hume SP, Myers R, Opacka-Juffrey J, Ashworth S, Brooks DJ, Dunnett SB (1997) The effects of donor stage on the survival and function of embryonic grafts in the adult rat brain. II. Correlation between positron emission tomography and reaching behaviour. Neuroscience 79:711–721

    Article  PubMed  CAS  Google Scholar 

  • Grabowski M, Brundin P, Johansson BB, Kontos HA (1993) Paw reaching, sensorimotor, and rotational behavior after brain infarction in rats. Stroke 24:889–895

    Article  PubMed  CAS  Google Scholar 

  • Marston HM, Faber ESL, Crawford JH, Butcher SP, Sharkey J (1995) Behavioural assessment of endothelin-1 induced middle cerebral artery occlusion in rats. Neuroreport 6(7):1067–1071

    Article  PubMed  CAS  Google Scholar 

  • Meyer C, Jacquart G, Joyal CC, Mahler P, Lalonde R (1997) A revolving food pellet test for measuring sensorimotor performance in rats. J Neurosci Methods 72:117–122

    Article  PubMed  CAS  Google Scholar 

  • Montoya CP, Astell S, Dunnett SB (1990) Effects of nigral and striatal grafts on skilled forelimb use in the rat. In: Dunnett SB, Richards SJ (eds) Progress in brain research, vol 82. Elsevier, Amsterdam, pp 459–466

    Google Scholar 

  • Montoya CP, Campell-Hope LJ, Pemberton KD, Dunnett SB (1991) The staircase test: a measure of independent forelimb reaching and grasping abilities in the rat. J Neurosci Methods 36:219–228

    Article  PubMed  CAS  Google Scholar 

  • Nakao N, Grasbon-Frodl EM, Widner H, Brundin P (1996) DARPP-32-rich zones in grafts of lateral ganglionic eminence govern the extent of functional recovery in skilled paw reaching in an animal model of Huntington’ disease. Neuroscience 74:959–970

    Article  PubMed  CAS  Google Scholar 

  • Nikkhah G, Duan WM, Knappe U, Jödicke A, Björklund A (1993) Restoration of complex sensorimotor behavior and skilled forelimb use by a modified nigral cell suspension transplantation approach in the rat Parkinson model. Neuroscience 56:33–43

    Article  PubMed  CAS  Google Scholar 

  • Olsson M, Nikkhah G, Bentlage C, Björklund A (1995) Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J Neurosci 15:3863–3875

    Google Scholar 

  • Sharkey J, Crawford JH, Butcher SP, Marston HM, Hayes RL (1996) Tacrolimus (FK506) ameliorates skilled motor deficits produced by middle artery occlusion in rats. Stroke 27:2282–2286

    Article  PubMed  CAS  Google Scholar 

  • Thiebot MH, Soubrie P, Simon P, Boissier JR (1973) Dissociation de deux composantes due comportement chez le rat due léffet de psychotropes. Application a lédute des anxiolytiques. Psychopharmacologia 31:77–90

    Google Scholar 

  • Whishaw IQ, O’Connor WT, Dunnett SB (1986) The contributions of motor cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat. Brain 109:805–843

    Article  PubMed  Google Scholar 

Stepping Test in Rats

  • Centonze D, Gubellini P, Rossi S, Picconi B, Pisani A, Bernardi G, Calabrese P, Baunez C (2005) Subthalamic nucleus lesion reverses motor abnormalities and striatal glutamatergic overactivity in experimental Parkinsonism. Neuroscience 133:831–840

    Article  PubMed  CAS  Google Scholar 

  • Olsson M, Nikkhah G, Bentlage C, Björklund A (1995) Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J Neurosci 15:3863–3875

    Google Scholar 

  • Picconi B, Centonze D, Hakansson K, Bernardi G, Greengard P, Fisone G, Cenci MA, Calabrese P (2003) Loss of bidirectional striatal synaptic plasticity in L-DOPA induced dyskinesia. Nat Neurosci 6:501–506

    PubMed  CAS  Google Scholar 

  • Picconi B, Centonze D, Rossi S, Bernardi G, Calabresi P (2004) Therapeutic doses of L-dopa reverse hypersensitivity of cortical D2-dopamine receptors and glutamatergic overactivity in experimental Parkinsonism. Brain 127:1661–1669

    Article  PubMed  Google Scholar 

  • Rosenblad C, Martinez-Serrano A, Björklund A (1997) Intrastriatal cell line-derived neurotrophic factor promotes sprouting of spared nigrostriatal dopaminergic afferents and induces recovery of function in a rat model of Parkinson’s disease. Neuroscience 82:129–137

    Article  Google Scholar 

  • Schallert T, Norton D, Jones TA (1992) A clinically relevant unilateral model of Parkinsonian akinesia. J Neural Transplant Plast 3:332–333

    Article  PubMed Central  Google Scholar 

  • Schallert T, Fleming M, Leasure JL, Tillerson JL, Balnd STR (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, Parkinsonism and spinal cord injury. Neuropharmacology 39:777–787

    Article  PubMed  CAS  Google Scholar 

Transgenic Animal Models of Parkinson’s Disease

  • Bandmann O, Davis MB, Marsden CD, Wood NW (1996) The human homologue of the weaver mouse gene in familial and sporadic Parkinson’s disease. Neuroscience 72:877–879

    Article  PubMed  CAS  Google Scholar 

  • Bankiewicz K, Mandel RJ, Sofroniew MV (1993) Trophism, transplantation, and animal models of Parkinson’s disease. Exp Neurol 124:140–149

    Article  PubMed  CAS  Google Scholar 

  • Brown VM, Ossadtchi A, Khan AH, Yee S, Lacan G, Melega WP, Cherry SR, Leahy RM, Smith DJ (2002) Multiplex three-dimensional brain gene expression mapping in a mouse model of Parkinson’s disease. Genome Res 12:868–884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cabin DE, Gispert-Sanchez S, Murphy D, Asuburger G, Myers RR, Nussbaum RL (2005) Exacerbated synucleinopathy in mice expressing A53T SNCA on a Snca null background. Neurobiol Aging 26:25–35

    Article  PubMed  CAS  Google Scholar 

  • Cheng SC, Ehrhard P, Goldowitz D, Smeyne RJ (1997) Developmental expression of the GIRK family of inward rectifying potassium channels: implications for abnormalities in the weaver mutant mouse. Brain Res 778:251–264

    Article  Google Scholar 

  • Ebadi M, Brown-Borg H, El Rafaey H, Singh BB, Garrett S, Shavali S, Sharma SK (2005) Metallothionein-mediated neuroprotection in genetically engineered mouse models of Parkinson’s disease. Brain Res Mol Brain Res 134:67–75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398

    Article  PubMed  CAS  Google Scholar 

  • Fernagut PO, Chesselet MF (2004) α-Synuclein and transgenic mouse models. Neurobiol Dis 17:123–130

    Article  PubMed  CAS  Google Scholar 

  • Frasier M, Walzer M, McCarthy L, Magnuson D, Lee JM, Haas C, Kahle P, Wolozin B (2005) Tau phosphorylation increases in symptomatic mice overexpressing A30P α-synuclein. Exp Neurol 192:274–287

    Article  PubMed  CAS  Google Scholar 

  • Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM (2002) Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human asynuclein. Neuron 34:521–533

    Article  PubMed  CAS  Google Scholar 

  • Gispert S, Del Turco D, Garrett L, Chen AS, Bernard DJ, Hamm-Clement J, Korf HW, Deller T, Auburger G, Braak H, Nussbaum RL (2003) Transgenic mice expressing mutant A53T human α-synuclein show neuronal dysfunction in the absence of aggregate formation. Mol Cell Neurosci 24:419–429

    Article  PubMed  CAS  Google Scholar 

  • Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, Meloni EG, Wu N, Ackerson LC, Klapstein GJ, Gajendiran M, Roth BL, Chesselet MF, Maidment NT, Levine MS, Shen J (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278:43628–43635

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-De-Aguilar JL, Rene F, Dupuis L, Loefflöer JP (2003) Neuroendocrinology of neurodegenerative diseases: insights from transgenic mouse models. Neuroendocrinology 78:244–252

    Article  PubMed  CAS  Google Scholar 

  • Havey BK, Wang Y, Hoffer BJ (2008) Transgenic rodent models of Parkinson’s disease. Acta Neurochir Suppl 101:89–92

    Article  Google Scholar 

  • Hashimoto M, Rockenstein E, Masliah E (2003) Transgenic models of α-synuclein pathology: past, present and future. Ann N Y Acad Sci 991:171–188

    Article  PubMed  CAS  Google Scholar 

  • Kirik D, Björklund A (2003) Modeling CNS neurodegeneration by overexpressing of disease-causing proteins using viral vectors. Trends Neurosci 26:386–392

    Article  PubMed  CAS  Google Scholar 

  • Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzyczka N, Mandel RJ, Björklund A (2002) Parkinson-like neurodegeneration induced by targeted overexpression of α-synuclein in the nigrostriatal system. J Neurosci 22:2780–2791

    PubMed  CAS  Google Scholar 

  • Kirik D, Annett LE, Burger C, Muzyczka N, Mandel RJ, Björklund A (2003) Nigrostriatal α-synucleinopathy induced by viral vector-mediated overexpression of human α-synuclein: a new primate model of Parkinson’s disease. Proc Natl Acad Sci U S A 100:2884–2889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lansbury PT Jr, Brice A (2002) Genetics of Parkinson’s disease and biochemical studies of implicated gene products. Curr Opin Cell Biol 14:653–660

    Article  PubMed  CAS  Google Scholar 

  • Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dhejia A, Lavedan C, Gasser T, Steinbach PJ, Wlkinson KD, Polymeropoulos MH (1998) The ubiquitin pathway in Parkinson’s disease. Nature 395:451–452

    Article  PubMed  CAS  Google Scholar 

  • Levine MS, Cepeda C, Hickey MA, Fleming SM, Chesselet MF (2004) Genetic mouse models of Huntington’s and Parkinson’s disease: illuminating but imperfect. Trends Neurosci 27:691–697

    Article  PubMed  CAS  Google Scholar 

  • Lindsten K, Menéndez-Benito V, Masucci MG, Danuma NP (2003) A transgene mouse model of the ubiquitin/proteasome system. Nat Biotechnol 21:897–902

    Article  PubMed  CAS  Google Scholar 

  • Lo Bianco C, Ridet JL, Schneider BL, Déglon N, Aebischer P (2002) α-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc Natl Acad Sci U S A 99:10812–10818

    Article  CAS  Google Scholar 

  • Martín-Clemente B, Alvarez-Castelao B, Mayo I, Sierra AB, Díaz V, Milán M, Fariñas I, Gómez-Isla T, Ferrer I, Castaño JG (2004) α-Synuclein expression levels do not significantly affect proteasome function and expression in mice and stably transfected PC12 cell lines. J Biol Chem 279:52984–52990

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Hashimoto M (2002) Development of new treatments for Parkinson’s disease in transgenic animal models: a role for β-synuclein. Neurotoxicology 23:461–468

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L (2000) Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science 287:1265–1269

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Rockenstein E, Veinbergs I, Sagara Y, Mallory M, Hashimoto M, Mucke L (2001) β-Amyloid peptides enhance α-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer’s disease and Parkinson’s disease. Proc Natl Acad Sci U S A 98:12245–12250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pendleton RG, Parvez F, Sayed M, Hilman R (2002) Effects of pharmacological agents upon transgenic model of Parkinson’s disease in Drosophila melanogaster. J Pharmacol Exp Ther 300:91–96

    Article  PubMed  CAS  Google Scholar 

  • Poon HF, Frasier M, Shreve N, Calabrese V, Wolozin B, Butterfield DA (2005) Mitochondrial associated metabolic proteins are selectively oxidized in A30P α-synuclein transgenic mice a model of familial Parkinson’s disease. Neurobiol Dis 18:492–498

    Article  PubMed  CAS  Google Scholar 

  • Scherzer CR, Jensen RV, Gullans SR, Feany MB (2003) Gene expression changes presage neurodegeneration in a Drosophila model of Parkinson’s disease. Hum Mol Genet 12:2457–2466

    Article  PubMed  CAS  Google Scholar 

  • Son OL, Kim HT, Ji MH, Yoo KW, Rhee M, Kim CH (2003) Cloning and expression analysis of a Parkinson’s disease gene, uch-L1, and its promoter in zebrafish. Biochem Biophys Res Commun 312:601–607

    Article  PubMed  CAS  Google Scholar 

  • Van der Putten H, Wiederhold KH, Probst A, Barbieri S, Mistl C, Danner S, Kauffmann S, Hofele K, Spooren WPJM, Ruegg MA, Lin S, Caroni P, Sommer B, Tolnay M, Bilbe G (2000) Neuropathology in mice overexpressing human α-synuclein. J Neurosci 20:6021–6029

    PubMed  Google Scholar 

  • Von Bohlen und Halbach O, Schober A, Krieglstein K (2004) Genes, proteins, and neurotoxins involved in Parkinson’s disease. Prog Neurobiol 73:151–177

    Google Scholar 

Cell Transplantations into Lesioned Animals

  • Ben-Hur T, Idelson M, Khaner H, Pera M, Reinhartz E, Itzik H, Reubinoff BE (2004) Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficits in Parkinsonian rats. Stem Cells 22:1246–1255

    Article  PubMed  Google Scholar 

  • Björklund LM, Sánchez-Pernaute R, Chung S, Andersson T, Chen IYC, McNaught KSP, Brownell AL, Jenkins BG, Wahlestedt C, Kim KS, Isacson O (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 99:2344–2349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blanchet PJ, Konitsiotis S, Mochzuki H, Pluta R, Emerich DF, Chase TN, Mouradian MM (2003) Complications of a trophic xenotransplant approach in parkinsonian monkeys. Prog Neuropsychopharmacol Biol Psychiatry 27:607–612

    Article  PubMed  Google Scholar 

  • Burnstein RM, Foltynie T, He X, Menon DK, Svendsen CN, Caldwell MA (2004) Differentiation and migration of long term expanded human neural progenitors in a partial lesion model of Parkinson’s disease. Int J Biochem Cell Biol 16:702–713

    Article  CAS  Google Scholar 

  • Byers B, Lee HL, Reijo-Pera R (2012) Modeling Parkinson’s disease using induced pluripotent stem cells. Curr Neurol Neurosci Rep 12(3):237–242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drucker-Colin R, Verdugo-Diaz L (2004) Cell transplantation for Parkinson’s disease: present status. Cell Mol Neurobiol 24:301–316

    Article  PubMed  CAS  Google Scholar 

  • Hao G, Yao Y, Wang J, Zhang L, Viroonchaptapan N, Wang ZZ (2002) Intrastriatal grafting of glomus cells ameliorates behavioral defects of Parkinsonian rats. Physiol Behav 77:519–525

    Article  PubMed  CAS  Google Scholar 

  • Jollivet C, Aubert-Pouessel A, Clavreul A, Venier-Julienne MC, Montero-Menei CN, Benoit JP, Menei P (2004) Long-term effect of intra-striatal glial cell line-derived neurotrophic factor-releasing microspheres in a partial rat model of Parkinson’s disease. Neurosci Lett 356:207–210

    Google Scholar 

  • Katayama Y, Kano T, Koboyashi K, Oshima H, Fukaya C, Yamanato T (2005) Difference in surgical strategies between thalamotony and thalamic deep brain stimulation for tremor control. J Neurol 252(Suppl):V17–V22

    Google Scholar 

  • Kim JH, Auerbach JM, Rodriguez-Gómez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sánchez-Pernaute R, Banklewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418:50–56

    Article  PubMed  CAS  Google Scholar 

  • Kim MJ, Jean SR, Kim SR, Lee MC, Chang SJ (2011) Lateralized effects of unilateral thalomotery and thalamic stimulation in patients with essential tremor. J Mov Disord 4(2):64–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Levy YS, Sroomza M, Melamed E, Offen D (2004) Embryonic and adult stem cells as a source for cell therapy in Parkinson’s disease. J Mol Neurosci 24:353–386

    Article  PubMed  CAS  Google Scholar 

  • Linazaroso G (2004) Recent failures of new potential symptomatic treatments for Parkinson’s disease: causes and solutions. Mov Disord 19:743–754

    Article  Google Scholar 

  • Mendez I, Baker KA, Hong M (2000) Simultaneous intrastriatal and intranigral grafting (double grafts) in the rat model of Parkinson’s disease. Brain Res Rev 32:328–338

    Article  PubMed  CAS  Google Scholar 

  • Picollo M, Fasano A (2015) Recent advances in essential tremor: surgical treatment. Parkinsons Relat Disord 19:49–57

    Google Scholar 

  • Rafuse VF, Soundarararajan P, Leopold C, Robertson HA (2005) Neuroprotective properties of cultured neural progenitor cells are associated with the production of sonic hedgehog. Neuroscience 131:899–916

    Article  PubMed  CAS  Google Scholar 

  • Richardson RM, Broaddus WC, Holloway KL, Fillmore HL (2005) Grafts of adult subependymal zone neuronal progenitor cells rescue hemiparkinsonian behavioral decline. Brain Res 1032:11–23

    Article  PubMed  CAS  Google Scholar 

  • Roitberg B, Urbaniak K, Emborg M (2004) Cell transplantation for Parkinson’s disease. Neurol Res 26:355–362

    Article  PubMed  Google Scholar 

  • Sawamoto K, Nakao N, Kobayashi K, Matsushita N, Takahashi H, Kakishita K, Yamamoto A, Yoshizaki T, Terashima T, Murakami F, Itakura T, Okano H (2001) Visualization, direct isolation, and transplantation of midbrain dopaminergic neurons. Proc Natl Acad Sci U S A 98:6423–6428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Staudt MD, Di Sebastiano AR, Xu H, Jog M, Schmid S, Foster P, Hebb MO (2015) Advances in neurotropic factor and cell-based therapies for Parkinson’s disease: a mini-review. Gerontology 66:116–128

    Google Scholar 

  • Takagi Y, Takahashi J, Saiki H, Morizane A, Hayashi T, Kishi Y, Fukuda H, Okamoto Y, Koyanagi M, Ideguchi M, Hayashi H, Imazato T, Kawasaki H, Suemori H, Omachi S, Iida H, Itoh N, Nakatsuji N, Sasai Y, Hashimoto N (2005) Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Invest 115:102–109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshizaki T, Inaji M, Kouike H, Shimazaki T, Sawamoto K, Ando K, Date I, Kobayashi K, Suhara T, Uchiyama Y, Okano H (2004) Isolation and transplantation of dopaminergic neurons generated from mouse embryonic stem cells. Neurosci Lett 363:33–37

    Article  PubMed  CAS  Google Scholar 

  • Zawada WM, Cibelli JB, Choi PK, Clarkson ED, Golueke PJ, Witta SE, Bell KP, Kane J, de Leon FAP, Jerry DJ, Robl JM, Freed CR, Stice SL (1998) Somatic cell cloned transgenic bovine neurons for transplantation in parkinsonian rats. Nat Med 4:569–574

    Article  PubMed  CAS  Google Scholar 

Transfer of Glial Cell Line-Derived

  • Bilang-Bleuel A, Revah F, Colin P, Locquet I, Robert JJ, Mallet J, Horellou P (1997) Intrastriatal injection of an adenoviral vector expressing glial-cell-line-derived neurotrophic factor prevents dopaminergic neuron degeneration and behavioral impairment in a rat model of Parkinson disease. Proc Natl Acad Sci U S A 94:8818–8823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Björklund A, Kirik D, Rosenblad C, Georgievska B, Lundberg C, Mandel RJ (2000) Towards a neuroprotective gene therapy for Parkinson’s disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain Res 886:82–98

    Article  PubMed  Google Scholar 

  • Chen X, Liu W, Guoyuan Y, Liu Z, Smith S, Calne DB, Chen S (2003) Protective effects of intracerebral adenoviral-mediated GDNF gene transfer in a rat model of Parkinson’s disease. Parkinsonism Relat Disord 10:1–7

    Article  PubMed  Google Scholar 

  • Cheng FC, Ni DR, Wu MC, Kuo JS, Chia LG (1998) Glial cell line-derived neurotrophic factor protects against 1-methyl-4,4-phenyl-1,2,3,6-tetrahydopyridine (MPTP)-induced neurotoxicity in C57BL/6 mice. Neurosci Lett 252:87–90

    Article  PubMed  CAS  Google Scholar 

  • Jollivet C, Aubert-Pouessel A, Clavreul A, Venier-Julienne MC, Montero-Menei CN, Benoit JP, Menei P (2004) Long-term effect of intra-striatal glial cell line-derived neurotrophic factor-releasing microspheres in a partial rat model of Parkinson’s disease. Neurosci Lett 356:207–210

    Google Scholar 

  • Kojima H, Abiru Y, Sakajiri K, Watanabe K, Ohishi N, Takamori M, Hatanaka H, Yagi K (1997) Adenovirus-mediated transduction with human glial cell line-derived neurotrophic factor gene prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopamine depletion in striatum of mouse brain. Biochem Biophys Res Commun 238:569–573

    Article  PubMed  CAS  Google Scholar 

  • Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, McBride J, Chen EY, Palfi S, Roitberg BZ, Brown WD, Holden JE, Pyzalski R, Taylor MD, Carvey P, Ling ZD, Trono D, Hantraye P, Déglon N, Aebischer P (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–773

    Article  PubMed  CAS  Google Scholar 

  • Lapchak PA, Araujo DM, Hilt DC, Sheng J, Jiao S (1997) Adenoviral vector-mediated GDNF gene therapy in a rodent lesion model of late stage Parkinson’s disease. Brain Res 777:153–160

    Article  PubMed  CAS  Google Scholar 

  • Mandel RJ, SK S, Snyder RO, Leff SE (1997) Midbrain injection of recombinant adeno-associated virus encoding rat glial cell line-derived neurotrophic factor protects nigral neurons in a progressive 6-hydroxydopamine-induced degeneration model of Parkinson’s disease in rats. Proc Natl Acad Sci U S A 94:14083–14088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thi NAD, Saillour P, Ferrero L, Dedieu JF, Mallet J, Paunio T (2004) Delivery of GDNF by an E1, E3/E4 deleted adenoviral vector and driven by a GFAP promoter prevents dopaminergic neuron degeneration in a rat model of Parkinson’s disease. Gene Ther 11:746–756

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Muaramatsu S, Lu Y, Ikeguchi K, Fujimoto K, Okada T, Mizukami H, Hanazono Y, Kume A, Urano F, Ichinose H, Nagatsu T, Nakano I, Ozawa K (2002) Delayed delivery of AAV-GDNF prevents nigral neurodegeneration and promotes functional recovery in a rat model of Parkinson’s disease. Gene Ther 9:381–389

    Article  PubMed  CAS  Google Scholar 

  • Yasuhara T, Shingo T, Muraoka K, Kobayashi K, Takeuchi A, Yano A, Wenji Y, Kameda M, Matsui T, Miyoshi Y, Date I (2005) Early transplantation of an encapsulated glial cell line-derived neurotrophin factor-producing cell demonstrating strong neuroprotective effects in a rat model of Parkinson disease. J Neurosurg 102:80–89

    Article  PubMed  Google Scholar 

  • Yoshimoto Y, Lin Q, Collier TJ, Frim DM, Breakefield XO, Bohn MC (1995) Astrocytes retrovirally transduced with BDNF elicit behavioral improvement in a rat model of Parkinson’s disease. Brain Res 691:25–36

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary-Jeanne Kallman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kallman, MJ. (2015). Anti-Parkinson Activity. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27728-3_32-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27728-3_32-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27728-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Anti-Parkinson Activity
    Published:
    03 March 2016

    DOI: https://doi.org/10.1007/978-3-642-27728-3_32-2

  2. Original

    Anti-Parkinson Activity
    Published:
    21 July 2015

    DOI: https://doi.org/10.1007/978-3-642-27728-3_32-1